TN-0068

APPLICATIONS

Improved Extraction of Pain Management and Illicit Drugs from Saliva using Popular Oral Fluid Collection Devices, Strata[™]-X-Drug B Solid Phase Extraction (SPE), and Kinetex[®] Core-Shell Phenyl-Hexyl HPLC/UHPLC Columns

Shahana Huq and Amanda Leffler

Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA

As the requirements for the analysis of controlled substances become ever greater, the need to make sampling quick, simple and reliable has also grown. The collection of oral fluid is gaining popularity due to the fact that it is not intrusive and it reduces the skill level requirement of the person taking the sample. Currently a consensus has not been reached on a device that should be used for sample collection. In this study we look at four different devices, and compare the results obtained for drugs varying in terms of hydrophobicity and their acidity/basicity.

Introduction

The testing of performance enhancing drugs and illegal substances in general has advanced dramatically over the last 10 years, thanks mainly to advances in instrumentation such as LC/MS/ MS. This has allowed for more rapid screening of drugs such as opiates, amphetamines, benzodiazepines, and THC. Samples of blood and urine are routinely collected to establish compliance with legal limits or to monitor patient compliance.1-3 Oral fluid sampling is now gaining popularity as it is a less invasive technique in terms of subject privacy meaning it can be conducted with less risk of sample adulteration or sample substitution. Additionally there is a decreased risk of infection compared to blood or urine sampling. There are an increasing number of sampling devices for oral fluids, some of which contain preservatives or stabilizing buffers. The choice of Oral Fluid Collector (OFC) can lead to differences in sample integrity and can potentially affect downstream analytical results.⁴ This study was set up to compare a number of popular Oral Fluid Collection (OFC) devices and to develop a fast and effective solid phase extraction (SPE) method to allow for enhanced sample processing prior to LC/MS/MS analysis. The OFC devices contained different components that require adjustments on the load and wash steps of the general SPE protocol previously developed for other matrices. The probe compounds used for this work were a combination of acids, bases, and some neutral species. The hydrophobicity of these compounds (logP) ranged from 0.78 (oxymorphone) to 5.94 (∆9-tetrahydrocannibinol). Following the SPE protocol HPLC was conducted using a high efficiency Kinetex 2.6 µm Phenyl-Hexyl core-shell column, utilizing an AB SCIEX API 5000[™] detector for MS/MS analysis.

Experimental Conditions

SPE Conditions Cartridge: Strata-X-Drug B, 30 mg/3 mL Part No.: 8B-S128-TBJ For SPE procedures for basic and acidic analytes see Table 4.

HPLC C	Conditions						
Column:		Kinetex 2.6 µm Core-Shell Phenyl-Hex					
Dimensions:		50 x 4.	6 mm				
Parl	t No.:	00B-44	95-E0				
Mobile Pl	nase:	A: 10 mM Ammonium formate B: 0.1 % Formic Acid in Methanol					
Grad	lient:	Time (r	nin)	B (%)			
		0		5			
		4		100			
		6		100			
Flow	Rate:	0.6 mL/	'min				
Detec	tion:	ANDENI API 5000 MS/MS (AB SCIEX)					
Injection Vol	ume:						
Instrum	nent:	Agilent [®] 1200					
Alternative H	PLC C	onditio	ns				
Column:	Kinete	ex 2.6 µm Core-Shell Biphenyl					
Dimensions:	50 x 3	8.0 mm					
Part No.:	00B-4	622-Y0					
Nobile Phase:	A: 0.1 B: 0.1	% Formi % Formi	ic acid ic Acid	in Water in Methanol			
Gradient:	Time	(min)	B (%)				
	0		10				
	2.5		100				
	3.5		100				
	3.51		10				
	5.0		10				
Flow Rate:	0.7 m	L/min					

phenomene

Table1.

Analyte classes

Classes	Analyte		
Benzodiazepines	Alprazolam		
	Diazepam		
	Flunitrazepam		
	Flurazepam		
	Lorazepam		
	Oxymorphone		
Opiates	Codeine		
	Hydrocodone		
	Morphine		
THC & Metabolites	THC-COOH		
	THC-OH		
	THC		
	AM694		
	JWH-018		
	JWH-018(5hp)		
	JWH-073		
	JWH-073(3hb)		
Analgesics	Tramadol		
	Buprenorphine		
	Norbuprenorphine		

APPLICATIONS

Table 2.

List of oral fluid collection (OFC) devices and their constituents

OFC Device	Preservative	Applicator	Collection Tube
Product 0	Yes	Yes	Yes
Product Q	Yes	Yes	Yes
Product C	No	Yes	No
Product N	No	No	Yes

Table 3.

MS/MS conditions for acids

ID	Q1 Mass	Q3 Mass	DP (V)	CE (V)
	345.4	299.1	70	26
100-0000	345.2	327	55	29
11100 /	436.1	231	50	39
AM694	436.1	309.2	50	31
14/1 010	342.2	155.1	70	36
JWHUI8	342.2	214.2	70	31
	358.3	155.2	70	31
JWH 018-(SIIP)	358.3	230.2	70	31
IW/H 072	328.2	155.2	70	33
JWH 073	328.2	200.2	70	31
JWH 073-(3hb)	344.2	155.2	70	29
	331.4	193.1	100	33
Inc-on	331.4	201.2	100	31
TUC	315.2	193.2	60	35
INC	315.2	259.2	60	20
	318	196.5	85	32
1110-03	318	123.1	90	41
JWH-073-D5	363.1	155.1	70	33

Table 4.

SPE procedures for basic and acidic analytes

	Basic Analytes	Acidic Analytes		
Sample Pre-treatment	 Place the applicator swab in 500 μL oral fluid, spiked with analyte mix 	1. Place the applicator swab in 500 μL oral fluid, spiked with analyte mix		
	2. Place it in cartridge containing preservative buffer	2. Place it in cartridge containing preservative buffer		
	 Add 1 mL 1 % Formic acid / Methanol (1:1) 	3. Add 1 mL Acetonitrile / 100 mM Sodium acetate buffer, pH		
	4. Add 1.5 mL 100 mM Sodium acetate buffer, pH 5.0	4. Transfer contents (after		
	 Transfer contents (after centrifugation) on the SPE cartridge 	centritugation) on the SPE cartridge		
Condition*	1 mL Methanol followed by 1 mL 100 mM Sodium acetate buffer, pH 5.0	1 mL Methanol followed by 1 mL Acetonitrile / 100 mM Sodium acetate buffer pH 5.0 (30:70)		
Load	Pre-treated sample	Pre-treated sample		
Wash 1	1 mL 100 mM Sodium acetate buffer, pH 5.0	1 mL 100 mM Sodium acetate buffer, pH 5.0		
Wash 2	1 mL 30 % Methanol in water	1 mL Acetonitrile / 100 mM Sodium acetate buffer pH 5.0 (30:70)		
Dry	5 min under 10-20" Hg vacuum	5 min under 10-20" Hg vacuum		
Elute	$2x~0.5mL$ Methanol / Acetonitrile (1:1) + 5 % NH_4OH (28-30 %). Add 30 $\mu L~0.1$ % HCl in methanol.	2x 0.5 mL Ethylacetate / Isopropanol (85:15)		
Dry Down	To dryness under N $_2$ (at 40-45 °C)	To dryness under N_2 (at 40-45 °C)		
Reconstitute	500 µL of mobile phase (A/B, 85:15) spiked with deuterated internal standard	In 500 µL of mobile phase (A/B, 55:45) spiked with deuterated internal standard		

* Strata-X-Drug sorbents do not require a condition/equilibration step. This step may be eliminated to provide further time and solvent savings.

Table 5.

Recovery of basic drugs from	various OFC devices vs. SPE
------------------------------	-----------------------------

Peak No.	Analyte	Product 0	Product Q	Product C	Product N	No Device* (SPE only)
1	Morphine	89	79	76	82	84
2	Oxymorphone	89	81	76	89	84
3	Codeine	89	82	85	92	98
4	Hydrocodone	88	84	86	76	99
5	Tramadol	87	83	82	90	83
6	Norbuprenorphine	95	80	55	101	99
7	Buprenorphine	89	85	52	102	105
8	Flurazepam	89	88	80	92	93
9	Lorazepam	88	86	26	91	75
10	Flunitrazepam	79	89	30	95	75
11	Alprazolam	78	89	51	87	77
12	Diazepam	81	81	30	90	75
	% RSD range	0.8 - 8%	0.4 - 11%	4 – 13%	1.9-8%	0.6 – 11 %

* Oral fluid passed through SPE cartridge without processing through the OFC device

Table 6.

Recovery of acidic drugs from various OFC devices vs. SPE

Peak No.	Analyte	Product 0	Product Q	Product C	Product N	No Device* (SPE only)
1	JWH 073 (3hb)	56	74	4	68	74
2	JWH 018 (5hp)	58	73	3	70	78
3	THC-OH	38	55	10	65	81
4	AM694	50	70	3	73	80
5	THC-C00H	43	56	34	63	70
6	JWH 073	48	61	3	83	79
7	THC	25	37	3	64	83
8	JWH 018	42	58	2	81	87
	% RSD range	5 – 15%	2 - 10%	2 – 11 %	2 – 11 %	0.5 – 9%

* Oral fluid passed through SPE cartridge without processing through the OFC device

Figure 1.

Representative LC/MS/MS chromatograms of acidic drugs using the OFC devices $% \label{eq:constraint}$

Figure 2.

Representative LC/MS/MS chromatograms of basic drugs using the OFC devices

Results and Discussion

Feasibility of the use of the OFC devices

- Based on recovery data and reproducibility, most OFC devices performed well for basic drugs (Table 5).
- Some acidic analytes displayed poor recovery data (**Table 6**) which could be attributed to the strong retention of the analyte to the applicator swab and/or other device component.
- Among the devices, Product C (no preservative buffer) and Product N (no buffer and no swab) are considered incomplete. With storage and sample collection being such critical issues, these two failed to meet the requirements of proper sample collection.
- Product N (device contains collection tube only) shows fair recovery for most of the compounds, but it is a mere reflection of performing SPE alone.
- Product Q shows the best performance when extracting these wide range test analytes from each component used in the device and yields a cleaner and ultrapure extract.

Conclusion

In this work, we present a viable and yet simple SPE method for the analysis of a wide range of drugs, using oral fluid collection as the matrix. Data generated for a number of collection devices have been compared to show their relative capacity and ease of use in the analysis and screening of the most commonly used illicit drugs.

References

1. Forensic Science International, vol. 219 (page 165-171), 2012

- 2. Forensic Science International, vol. 164 (page 126-130), 2006
- 3. Forensic Science International, vol. 227 (page 69-73), 20134.
- 4. Journal of Analytical toxicology vol 32 July/August 2008.

ICATIONS

AJ0-8781

AJ0-9208

for 3.0 mm ID

AJ0-8774

AJ0-9207

for 4.6 mm ID

Ordering Information

KINETEX® 2.6µm COLUMNS (mm) SecurityGuard [™] ULTRA Cartridges [‡]								tridges [‡]	
Phases	50 x 2.1	100 x 2.1	50 x 3.0	50 x 4.6	100 x 4.6	150 x 4.6	3/pk	3/pk	3/pk
Phenyl-Hexyl	00B-4495-AN	00D-4495-AN	_	00B-4495-E0	00D-4495-E0	00F-4495-E0	AJ0-8788	AJ0-8781	AJ0-8774
Biphenyl	00B-4622-AN	00D-4622-AN	00B-4622-Y0	00B-4622-E0	00D-4622-E0	00F-4622-E0	AJ0-9209	AJ0-9208	AJ0-9207
							for 2.1 mm ID	for 3.0 mm ID	for 4.6 mm ID
KINETEX 5µm COLUMNS (mm) SecurityGuard™ ULTRA Cartridges‡						tridges [‡]			
Phases	50 x 2.1	50 x 3.0	50 x 4.6	100 x 4.6	150 x 4.6	250 x 4.6	3/pk	3/pk	3/pk

00F-4603-E0

00F-4627-E0

00B-4627-AN 00B-4627-Y0 *SecurityGuard ULTRA cartridges require holder, Part No. AJ0-9000

00B-4603-E0

00B-4627-E0

00D-4603-E0

00D-4627-E0

00B-4603-AN

Strata[™]-X-Drug B SPE

Phenyl-Hexyl

Biphenyl

Sorbent Mass	Part No.	Unit
Tube		
10 mg	8B-S128-AAK	1 mL (100/box)
10 mg	8L-S128-AAK [†]	1 mL (100/box)
30 mg	8B-S128-TAK	1 mL (100/box)
30 mg	8L-S128-TAK [†]	1 mL (100/box)
30 mg	8B-S128-TBJ	3 mL (50/box)
60 mg	8B-S128-UBJ	3 mL (50/box)
60 mg	8B-S128-UCH	6 mL (30/box)
60 mg	8B-S128-UCL	6 mL (200/bag)
Giga™ Tube		
100 mg	8B-S128-EDG	12 mL (20/box)
96-Well Plate		
10 mg	8E-S128-AGB	2 Plates/Box
30 mg	8E-S128-TGB	2 Plates/Box
60 mg	8E-S128-UGB	2 Plates/Box
† Tab-less tube		
Accessories		
Collection Plat	es (deep well, polypropylene)	
AH0-7192	96-Well Collection Plate 350 µL/well	50/pk
AH0-7193	96-Well Collection Plate 1 mL/well	50/pk
AH0-7194	96-Well Collection Plate 2 mL/well	50/pk
AH0-8635	96-Well Collection Plate, 2 mL Square/Round-Conical	50/pk
AH0-8636	96-Well Collection Plate, 2 mL Round/Round, 8 mm	50/pk
AH0-7279	96-Well Collection Plate, 1 mL/well Round, 7 mm	50/pk
Sealing Mats		
AH0-8597	Sealing Mats, Pierceable, 96-Square Well, Silicone	50/pk
AH0-8598	Sealing Mats, Pre-Slit, 96-Square Well, Silicone	50/pk
AH0-8631	Sealing Mats, Pierceable, 96-Round Well 7 mm, Silicone	50/pk
AH0-8632	Sealing Mats, Pre-Slit, 96-Round Well 7 mm, Silicone	50/pk
AH0-8633	Sealing Mats, Pierceable, 96-Round Well 8 mm, Silicone	50/pk
AH0-8634	Sealing Mats, Pre-Slit, 96-Round Well 8 mm, Silicone	50/pk
AH0-7362	Sealing Tape Pad	10/pk
Vacuum Manif	olds	
AH0-6023*	SPE 12-Position Vacuum Manifold Set, for tubes	ea
AH0-6024*	SPE 24-Position Vacuum Manifold Set, for tubes	ea
AH0-8950	96-Well Plate Manifold, Universal with Vacuum Gauge	ea

*Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack as-semblies, polypropylene needles, lid support legs. Waste container included with 12-positive manifold.

guarantee

If Phenomenex products in this technical note do not provide at least an equivalent separation as compared to other products of the same phase and dimensions, return the product with comparative data within 45 days for a FULL REFUND.

Terms and Conditions

Subject to Phenomenex Standard Terms and Conditions which may be viewed at http://www.phenomenex.com/TermsAndConditions.

Trademarks

Kinetex is a registered trademark and Strata-X, SecurityGuard, and Giga are trademarks of Phenomenex. Agilent is a registered trademark of Agilent Technologies. API 5000 is a trademark of AB SCIEX Pte. Ltd. AB SCIEX is being used under license.

Strata-X is patented by Phenomenex, U.S. Patent No. 7,119,145

© 2014 Phenomenex, Inc. All rights reserved.

Australia t: 02-9428-6444

f: 02-9428-6445 auinfo@phenomenex.com

00G-4603-E0

00G-4627-E0

AJ0-8788

AJ0-9209

for 2.1 mm ID

Austria

t: 01-319-1301 f: 01-319-1300 anfrage@phenomenex.com

Belgium

- t: 02 503 4015 (French) t: 02 511 8666 (Dutch)
- f: +31 (0)30-2383749 beinfo@phenomenex.com

Canada

t: (800) 543-3681 f: (310) 328-7768 info@phenomenex.com

Denmark

- t: 4824 8048
- f: +45 4810 6265 nordicinfo@phenomenex.com

Finland

t: 09 4789 0063 f: +45 4810 6265 nordicinfo@phenomenex.com

France

- 01 30 09 21 10 f: 01 30 09 21 11
- franceinfo@phenomenex.com

Germany t: 06021-58830-0

06021-58830-11 anfrage@phenomenex.com

India

t: 040-3012 2400 f: 040-3012 2411 indiainfo@phenomenex.com

Ireland

- t: 01 247 5405
- f: +44 1625-501796 eireinfo@phenomenex.com

Italv

- t: 051 6327511
- f: 051 6327555 italiainfo@phenomenex.com

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com

Luxembourg

- +31 (0)30-2418700 t:
- f: +31 (0)30-2383749 nlinfo@phenomenex.com

Mexico

- t: 001-800-844-5226 f: 001-310-328-7768
- tecnicomx@phenomenex.com

The Netherlands

- t: 030-2418700 f: 030-2383749
- nlinfo@phenomenex.com

New Zealand t: 09-4780951

f: 09-4780952 nzinfo@phenomenex.com

Norway

- t: 810 02 005
- f +45 4810 6265 nordicinfo@phenomenex.com

Puerto Rico

- t: (800) 541-HPLC f: (310) 328-7768 info@phenomenex.com

Sweden

t: 08 611 6950

f: +45 4810 6265

nordicinfo@phenomenex.com

United Kingdom

t: 01625-501367 f: 01625-501796

ukinfo@phenomenex.com

United States

t: (310) 212-0555

(310) 328-7768 info@phenomenex.com

All other countries: [) Corporate Office USA

- t: (310) 212-0555 (310) 328-7768
- info@phenomenex.com