

APPLICATIONS

Determination of Aflatoxin B₁, B₂, G₁ and G₂ in Grain using Solid Phase Extraction and LC-MS/MS

Xianrong (Jenny) Wei, Allen Misa, Scott Krepich and Sean Orlowicz Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA

Xianrong (Jenny) Wei Senior Scientist Jenny is a Senior Scientist in the Phenomenex PhenoLogix applications laboratory.

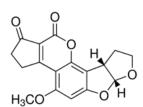
Introduction

Produced by various fungi, mycotoxins are very harmful toxins found regularly in feed and grain products. Mycotoxins result in both acute and chronic health effects in humans and livestock when consumed. With the globalization of the food supply, mycotoxins from grain is a global concern for both developing and developed countries. In this study, we present a rapid and sensitive method for mycotoxins per the new China GB method GB2009.22-2016 that can be used on both HPLC and UHPLC platforms. Specifically, Aflatoxin B₁, B₂, G₁ and G₂ in grain are extracted using Strata®-X solid phase extraction (SPE) followed by a rapid LC-MS/MS method using a Kinetex® 1.7 µm C18 coreshell LC column. The SPE sample cleanup successfully removes interferences from the grain, resulting in great recoveries and meetings the assay acceptance criteria. Additionally, the high efficiency and selectivity of the core-shell column produced excellent baseline separation of the 4 aflatoxins for more accurate quantitation.

Materials

Aflatoxin (B_1 , B_2 , G_1 and G_2) mix, 20 μ g/mL in acetonitrile (Sigma-Aldrich, P/N: 33415)

Aflatoxin B₁ – 13C17, 0.5 μg/mL in acetonitrile (Sigma-Aldrich, P/N: 32764)


Aflatoxin G_1 – 13C17, 0.5 μ g/mL in acetonitrile (Sigma-Aldrich, P/N: 32772)

All other reagents and chemicals were obtained from Sigma-Aldrich® (St. Louis, MO).

Structures:

Aflatoxin B₁

Aflatoxin G

Aflatoxin B,

Aflatoxin G

Experimental Conditions

Sample Pre-treatment

- Grind the grain sample using a grinder until a homogeneous powder is formed
- Sift the powder through a 2 mm sieve and store in a dark room at 4°C
- 3. Weigh 2.5 g of sample powder to a 50 mL centrifuge tube
- **4.** Add 30 μ L working IS solution (Aflatoxin B₁ 13 C₁₇/ Aflatoxin G₁ 13 C₁₇, 100/100 ng/mL in acetonitrile)
- 5. Add 10 mL of 0.1% Formic Acid in 85:15 Acetonitrile/Water to the sample tube and mix for 1 min
- 6. Sonicate samples for 30 min under 30 °C.
- 7. Centrifuge sample tubes at 4000 rpm for 10 min
- 8. Transfer the sample supernatant to 20 mL glass vial
- 9. Aliquot 1 mL sample supernatant and dilute with 1 mL DI water

Solid Phase Extraction (SPE) Conditions

SPE Cartridge: Strata–X, 60 mg/3 mL
Part No.: 8B-S100-UBJ
Condition: 2 mL Methanol

Equilibrate: 2 mL Methanol/Water (10:90)

Load: 2 mL Diluted sample supernatant with DI water (1:1)

Wash: 1 mL Methanol/Water (20:80)

Elute: 1 mL 2 % Formic Acid in Methanol

Dry: $40 \, ^{\circ}\text{C}$ under N_2 Reconstitute: $300 \, \mu\text{L} \, 0.1\%$ Formic Acid in Acetonitrile/Water (5:95)

Filter: 0.2 µm Phenex™ Syringe Filter*

Inject: 10 µL

LC-MS/MS Conditions

Column:: Kinetex 1.7 µm C18

Dimensions.: 100 x 3.0 mm

Part No.: 00D-4475-Y0

Guard Column: SecurityGuard™ ULTRA Cartridges

Part No.: AJ0-8775

Mobile Phase: A: 5 mM Ammonium acetate in Water

B: Acetonitrile/Methanol (50:50)

 dient:
 Time (min)
 %B

 0.01
 40

 0.50
 40

 3.00
 70

 4.20
 100

 5.01
 40

 7.00
 40

Flow Rate: 0.3 mL/min Col. Temp.: 40 °C Inj. Volume: 10 µL

Detector: SCIEX Triple Quad™ 4500, ESI+

^{*} Filtering sample is optional depending on the sample matrix

APPLICATIONS

Standard and Quality Control sample preparation scheme in spiking solution and grain sample

STDs in spiking solution and grain matrix

STD (ng/mL)	Spiking Solution ID	Spiking Solution Volume (µL)	Dilution Solvent (40:60 Acetonitrile/ Water) (µL)	Spiking Solution Concentration (ng/mL)	STD Volume Spiking into Matrix (µL)	Final Conc. in Matrix (ng/mL)	Matrix Weight (g)
STD 6	20 μg/mL	50	1950	500	50	10	2.5
STD 5	20 μg/mL	12.5	987.5	250	50	5	2.5
STD 4	STD 6	200	800	100	50	2	2.5
STD 3	STD 6	100	900	50	50	1	2.5
STD 2	STD 6	50	950	25	50	0.5	2.5
STD 1	STD 6	10	990	5	50	0.1	2.5

STDs QCs in spiking solution and grain matrix

QCs in spiking solution and grain matrix

QC (ng/mL)	Spiking Solution ID	Spiking Solution Volume (µL)	Dilution Solvent (40:60 Acetonitrile/ Water) (µL)	Spiking Solution Concentration (ng/ mL)	STD Volume Spiking into Matrix (µL)	Final Conc. in Matrix (ng/mL)	Matrix Weight (g)
QC H	20 μg/mL	12.5	987.5	250	50	5	2.5
QC L	STD 6 (500 ng/mL)	50	950	25	50	0.5	2.5

Stock solution of aflatoxin mix at 20 μ g/mL is in acetonitrile Dilution Solvent: 40:60 Acetonitrile/Water Matrix: Grain sample

Figure 1.
Grain sample at 2 ng/mLL

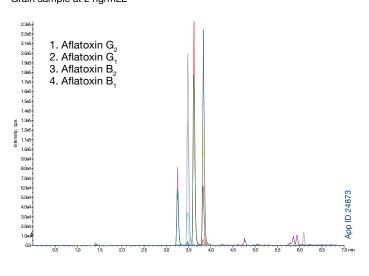


Figure 2. LLOQ in grain sample at 0.1 ng/mL

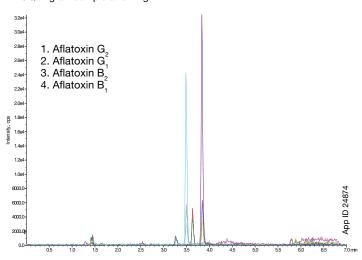
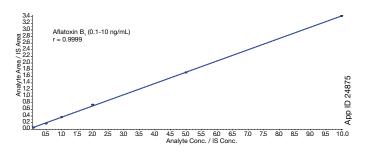
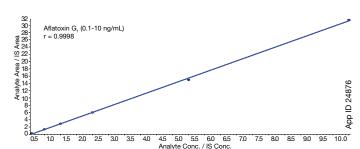




Figure 3. Linearity Curves

APPLICATIONS

Table1.
MRM Transitions

VINIVI ITALISILIOTIS					
ID	Q1 Mass (Da)	Q3 Mass (Da)	Dwell (msec)	CE	
AFB ₁ 1	313.2	241.2	50	51	
AFB ₁ 2	313.2	269.1	50	45	
AFB ₂ 1	315.2	287.2	50	36	
AFB ₂ 2	315.2	259.2	50	44	
AFG ₁ 1	329.2	243.1	50	38	
AFG ₁ 2	329.2	215.2	50	45	
AFG ₂ 1	331.2	245.2	50	42	
AFG ₂ 2	331.2	217.2	50	47	
AFB ₁ -13C ₁₇	330.2	285.2	50	35	
AFG ₁ -13C ₁₇	346.2	228.2	50	40	

Table 2.
Accuracy and Precision

Sample ID	OCI (n=2)	OCH (n=2)
Sample ID	QCL (n=3)	QCH (n=3)
Nominal Concentration (ng/mL)	0.500	5.00
	Aflatoxin B ₁	
1	0.443	4.99
2	0.442	5.26
3	0.449	5.43
Mean	0.445	5.23
S.D.	0.00	0.22
% CV	0.85	4.25
% Theoretical	88.9	105
	Aflatoxin B ₂	
1	0.416	4.96
2	0.448	5.04
3	0.450	5.56
Mean	0.438	5.19
S.D.	0.02	0.33
% CV	4.36	6.28
% Theoretical	87.6	104
	Aflatoxin G ₁	
1	0.557	4.67
2	0.529	4.98
3	0.543	4.90
Mean	0.543	4.85
S.D.	0.01	0.16
% CV	2.58	3.32
% Theoretical	109	97.0
	Aflatoxin G ₂	
1	0.467	4.72
2	0.448	5.21
3	0.529	5.32
Mean	0.481	5.08
S.D.	0.04	0.32
% CV	8.80	6.28
% Theoretical	96.3	102

Figure 4.

Sample concentration calculation formula

$$X = \frac{A \times V \times f \times 1000}{m \times 1000}$$

Where,

 \boldsymbol{X} is the content of aflatoxins in the sample (µg/kg) \boldsymbol{A} is the calculated concentration in the sample (ng/mL) \boldsymbol{V} is the constant volume (mL), in this method V= 0.3 mL \boldsymbol{f} is the times diluted, in this method f=10 \boldsymbol{m} is the weight of sample (g)

Results and Discussion

Demonstrated is an LC-MS/MS method for the determination of Aflatoxin $B_1,\,B_2,\,G_1$ and G_2 in whole grain using a Phenomenex Strata-X SPE and a Kinetex 1.7 μm C18 LC column. The assay shows acceptable accuracy and precision in triplicate samples which is presented in **Table 2**. **Table 1** shows all mass transitions that were used in the study. The assay linearity was evaluated with 0.1-10 ng/mL with 1/X² regression and r > 0.9998 value for all compounds (**Figure 3**). **Figure 4** is the actual sample concentration calculation formula from the grain sample.

The method was optimized with baseline separation of all compounds using a Kinetex 1.7 µm C18, 100 x 3.0 mm LC column (Figure 1) under LC-MS/MS conditions. The method can also be adapted for Florescence Detection (FLD). The 3.0 mm analytical LC column diameter was used to reduce the LC system back pressure significantly and reach an assay LLOQ at 0.1 ng/mL (Figure 2). The assay ruggedness was also increased using 3.0 mm ID column which improves the productivity and cost saving in the lab

A SCIEX Triple Quad[™] 4500 mass spectrometer or similar ion source designed of mass spectrometers are recommend for the assay to minimize the ion in-source saturation, which will affect the Aflatoxin B_1 and B_2 as quadratic curves, not linear curve.

The whole grain sample was obtained from a local Whole Foods Market®, the possible background from blank matrix was monitored after the Strata-X SPE extraction, there is no interference/endogenous peak appearing near all the expected retention times of compounds.

Conclusion

A LC-MS/MS method for the determination of Aflatoxin $\,B_1^{},\,B_2^{},\,G_1^{}$ and $\,G_2^{}$ in whole grain using a Phenomenex Strata-X SPE and a Kinetex 1.7 μm C18 column is presented in this tech note. The SPE extraction procedure successfully removes interferences from the grain, resulting in great recoveries. Additionally, the high efficiency and selectivity of the core-shell column produced excellent baseline separation of the 4 aflatoxins for more accurate quantitation. The assay is not limited to only LC-MS/MS and can be adapted for FLD detector use. The method can be used in other samples in the food testing industry such as milk, honey and nuts.

Ordering Information Kinetex® Core-Shell LC Columns

Security(2.6 µm Minibore Columns (mm) ULTRA Ca							
Phases	30 x 2.1	50 x 2.1	75 x 2.1	100 x 2.1	150 x 2.1	3/pk	
C18	00A-4462-AN	00B-4462-AN	00C-4462-AN	00D-4462-AN	00F-4462-AN	AJ0-8782	
						for 2.1 mm ID	

2.6 µm N	SecurityGuard ULTRA Cartridges‡					
Phases	30 x 3.0	50 x 3.0	75 x 3.0	100 x 3.0	150 x 3.0	3/pk
C18	00A-4462-Y0	00B-4462-Y0	00C-4462-Y0	00D-4462-Y0	00F-4462-Y0	AJ0-8775
						for 3.0 mm ID

2.6 µm A	2.6 µm Analytical Columns (mm)						
Phases	30 x 4.6	50 x 4.6	75 x 4.6	100 x 4.6	150 x 4.6	3/pk	
C18	00A-4462-E0	00B-4462-E0	00C-4462-E0	00D-4462-E0	00F-4462-E0	AJ0-8768	
						for 4.6 mm ID	

1.7 µm M	inibore Columns (mm)			SecurityGuard ULTRA Cartridges‡
Phases	30 x 2.1	50 x 2.1	100 x 2.1	150 x 2.1	3/pk
C18	00A-4475-AN	00B-4475-AN	00D-4475-AN	00F-4475-AN	AJ0-8782

for 2.1 mm ID

Australia

t: +61 (0)2-9428-6444 f: +61 (0)2-9428-6445 auinfo@phenomenex.com

Austria t: +43 (0)1-319-1301 f: +43 (0)1-319-1300 anfrage@phenomenex.com

Belgium t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch) f: +31 (0)30-2383749 beinfo@phenomenex.com

Canada t: +1 (800) 543-3681 f: +1 (310) 328-7768 info@phenomenex.com

China

t: +86 400-606-8099 f: +86 (0)22 2532-1033 phen@agela.com

Denmark t: +45 4824 8048 f: +45 4810 6265 nordicinfo@phenomenex.com

Finland t: +358 (0)9 4789 0063

f: +45 4810 6265 nordicinfo@phenomenex.com

France t: +33 (0)1 30 09 21 10 f: +33 (0)1 30 09 21 11 franceinfo@phenomenex.com

Germany t: +49 (0)6021-58830-0 f: +49 (0)6021-58830-11 anfrage@phenomenex.com

India

t: +91 (0)40-3012 2400 f: +91 (0)40-3012 2411 indiainfo@phenomenex.com

Ireland

t: +353 (0)1 247 5405 f: +44 1625-501796 eireinfo@phenomenex.com

Italy t: +39 051 6327511 f: +39 051 6327555 italiainfo@phenomenex.com www.phenomenex.com

Luxembourg t: +31 (0)30-2418700 f: +31 (0)30-2383749 nlinfo@phenomenex.com

Mexico t: 01-800-844-5226 f: 001-310-328-7768 tecnicomx@phenomenex.com

The Netherlands

+31 (0)30-2418700 f: +31 (0)30-2383749 nlinfo@phenomenex.com

New Zealand

t: +64 (0)9-4780951 f: +64 (0)9-4780952 nzinfo@phenomenex.com

Norway t: +47 810 02 005 f: +45 4810 6265 nordicinfo@phenomenex.com

Portugal t: +351 221 450 488 f: +34 91-413-2290 ptinfo@phenomenex.com

Spain t: +34 91-413-8613 f: +34 91-413-2290 espinfo@phenomenex.com

Sweden t: +46 (0)8 611 6950 f: +45 4810 6265 nordicinfo@phenomenex.com

Switzerland t: +41 61 692 20 20 f: +41 61 692 20 22

swissinfo@phenomenex.com

United Kingdom t: +44 (0)1625-501367

f: +44 (0)1625-501796 ukinfo@phenomenex.com

USA

t: +1 (310) 212-0555 f: +1 (310) 328-7768 info@phenomenex.com

f: +1 (310) 328-7768 info@phenomenex.com

All other countries Corporate Office USA t: +1 (310) 212-0555

SecurityGuard ULTRA Cartridges 1.7 µm MidBore Columns (mm) 30 x 3.0 50 x 3.0 100 x 3.0 3/pk 00B-4475-Y0 00D-4475-Y0 AJ0-8775 for 3.0 mm ID

Strata®-X Polymeric SPE Tubes

Tubes	1 mL (100/box)	3 mL (50/box)
Phase	30 mg	60 mg
Strata-X	8B-S100-TAK	8B-S100-UBJ
Strata-X-C	8B-S029-TAK	8B-S029-UBJ
Strata-X-CW	8B-S035-TAK	8B-S035-UBJ
Strata-X-A	8B-S123-TAK	8B-S123-UBJ
Strata-X-AW	8B-S038-TAK	8B-S038-UBJ
Strata-XL	8B-S043-TAK	8B-S043-UBJ
Strata-XL-C	8B-S044-TAK	8B-S044-UBJ
Strata-XL-CW	8B-S052-TAK	8B-S052-UBJ
Strata-XL-A	8B-S053-TAK	8B-S053-UBJ
Strata-XL-AW	8B-S051-TAK	8B-S051-UBJ

*SecurityGuard Ultra Cartridges require holder, Part No.: AJ0-9000
*PREP SecurityGuard Cartridges require holder, Part No. AJ0-8223
**PREP SecurityGuard Cartridges require holder, Part No. AJ0-8277

guarantee

If Phenomenex products in this technical note do not provide at least an equivalent separation as compared to other products of the same phase and dimensions, return the product with comparative data within 45 days for a FULL REFUND.

Subject to Phenomenex Standard Terms & Conditions, which may be viewed at www. phenomenex.com/TermsAndConditions

Trademarks

Kinetex and Strata are registered trademarks and Midbore, SecurityGuard and Phenex are trademarks of Phenomenex. Triple Quad is a trademark of SCIEX Pte. Ltd. AB SCIEX[™] is being used under license. Whole Foods Market is a registered trademark of Whole Foods Market IP, L.P.

Phenomenex is not affiliated with Cerilliant, Sigma-Aldrich.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures

© 2018 Phenomenex, Inc. All rights reserved.