

Development of a New Analytical Method for Determining Pesticide Residues by Gas

Chromatography-High Resolution Mass Spectrometry using the Zebron™ ZB-5MSplus™ GC Column

Javier Arrebola, PhD¹, Roberto Romero, PhD¹, Antonia Garrido, PhD¹, Irene Dominguez, PhD¹, Francisco Egea, PhD¹, Sean Orlowicz², Richard Jack, PhD², Ramkumar Dhandapani, PhD² ¹Department of Chemistry and Physics, University of Almeria, Carr. Sacramento, s/n, 04120 La Cañada, Almeria, Spain, ²Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501, USA

Introduction

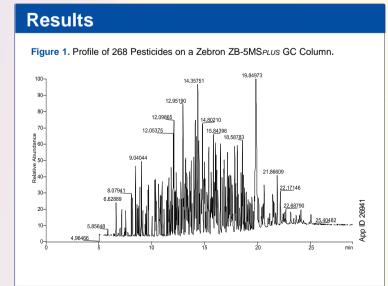
Food from plant origin, fresh or processed ones, may contain pesticide residues due to agricultural practices. Food safety control is highly relevant for the protection of consumers and therefore, pesticide residues are regulated by governments and professional associations. Maximum residue limits (MRLs) establish the maximum allowed amount of pesticides in fruits and vegetables to be consumed. Although MS/MS based methods are popular for pesticide analysis, GC-HRMS adds a new dimension of authenticity with accurate mass measurement

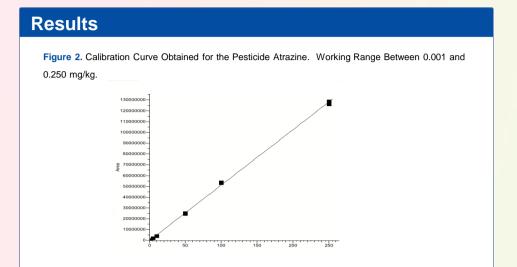
HRMS instruments present high capability for unequivocal identification of compounds thanks to the measurement of accurate mass. The combination of gas chromatography with HRMS is a very powerful tool together with nominal spectral libraries for screening purposes. Here we show the capabilities of the Zebron ZB-5MS_{PUS} columns in separating residual pesticides by coupling GC with HRMS. The ZB-5MS_{PLUs} stationary phase provides a deactivated silica surface and a 5 % phenyl-arylene selectivity that provides the best peak shape for challenging pesticide compounds. Such methodology has a higher impact on users than a traditional one based on low resolution mass spectrometry.

Materials and Methods

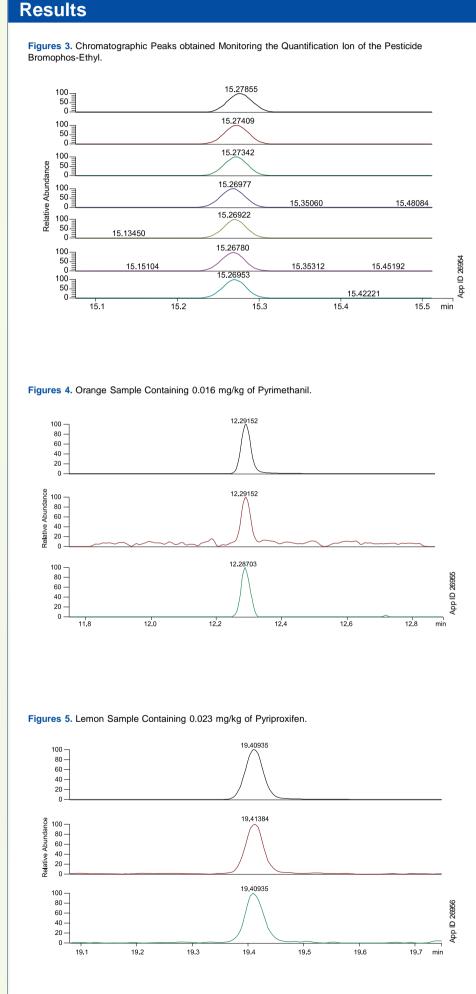
Fruit and vegetable samples were chopped and homogenized according to the method established in Directive 2002/63/EC. Samples were processed following a citrated buffered roQ $^{\text{TM}}$ QuEChERS protocol (KS0-8909).

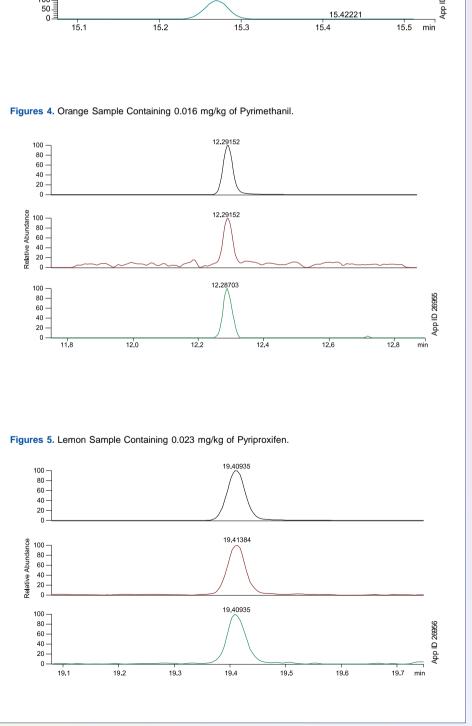
A 10 g portion of sample was weighed in a 50 mL polypropylene centrifuge tube. 10 mL of Acetonitrile was added to the sample, and was vortexed for 2 min.

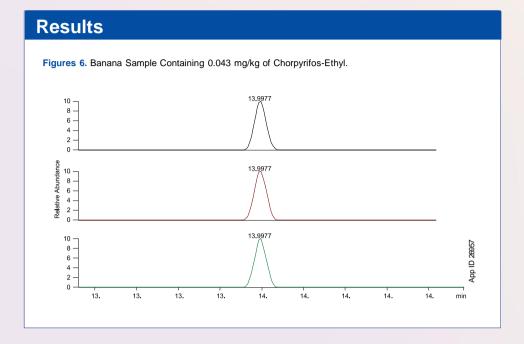

Afterwards, 4 g of Magnesium Sulfate, 1 g of Sodium Chloride, 1 g of Trisodium Citrate Dehydrate, and 0.5 g of Sodium Hydrogencitrate Sequihydrate were added. The sample was vortexed for 2 min. The tube was centrifuged for 6 min


Then, a clean-up step was carried out. 5 mL of the extract was transferred to a 15 mL centrifuge tube containing 750 mg of Magnesium Sulfate and 125 mg of Primary/Secondary Amine. The sample was again vortexed for 1 min. The tube was then centrifuged for 5 min at 3700 rpm (3601 x g). Finally, a 1 mL aliquot of the clean extract was evaporated with a Nitrogen stream to dryness and redissolved with 950 μL of Ethyl Acetate and 50 μL of Propoxur-d7.

GC-HRMS Conditions


Detector Temperature: 250 °C


Column: Zebron ZB-5MSPLUS Dimension: 30 meter x 0.25 mm x 0.25 µm Part No.: 7HG-G030-11 Injection: Splitless @ 280 °C. 1 uL Carrier Gas: Helium @ 1 mL/min (Constant Flow) Temp (°C) Oven Program: Ramp(°C/min) 8.0 Detector: GC-MS



Compound Name		Compound Name	R ²
,4-Dimetilnaftaleno	0.998942219	Disulfoton	0.99793204
-phenylphenol	0.998386807	Ditalimfos	0.998949092
,5-Dichloroaniline (3,5-Dichlorobenzenamine)	0.998630422	Edifenphos	0.998653756
,4-Dibromobenzophenone	0.998386517	Endosulfan ether	0.998638926
,4-Diclorobenzofenon	0.998228884	Endosulfan sulfate	0.999399315
-Chloro-3-methylphenol	0.996688092	Endrin	0.998706712
clonifen	0.99353018	Endrin ketone	0.999094107
crinathrin	0.998209792	EPTC (Eptam)	0.999078096
Nachlor	0.999028669	Esfenvalerate	0.998456522
Aldrin/Aldrin-r	0.998418941	Ethion	0.991168804
Anthraquinone	0.998542205	Ethoprophos	0.999075798
trazine	0.999238283	Ethoxyquin	0.99138868
zoxystrobin	0.99829505	Etridiazole	0.999002176
Benalaxyl	0.998976646	Etrimfos	0.999232783
enfluralin	0.995444223	Famfur (Fonofos)	0.999047473
enfuresate	0.998892031	Fenamiphos	0.998265698
enodalil	0.998558157	Fenamiphos sulfone	0.99780723
enoxacor	0.99725214	Fenamiphos sulfoxide	0.999045189
enzene, hexachloro	0.999296242	Fenarimol	0.998445175
enzyl benzoate	0.997957247	Fenazaquin	0.995167663
ifenazato	0.97333699	Fenbuconazol	0.998503846
iphenyl	0.998079986	Fenchlorphos/Ronnel	0.99932361
ifenox	0.999503797	Fenhexamid	0.991202336
ifenthrin	0.998892937	Fenitrothion	0.999177411
itertanol	0.996683478	Fenobucarb	0.999194468
oscalid	0.998999274	Fenoxaprop-P-ethyl	0.998502038
romacil	0.9988172	Fenoxycarb	0.998782417
romocyclen	0.998985819	Fenpropathrin	0.998961115
romophos-ethyl	0.999045465	Fenpropimorph	0.999120732
romophos-methyl	0.999417057	Fenson	0.997326316
romopropylate	0.99904998	Fenthion	0.999217523
upirimate	0.998402377	Fenvalerate	0.998299334
uprofezin	0.998783956	Fipronil	0.99877209
utafenacil	0.995907777	Fipronil sulfone	0.998210819
utilate	0.997556098	Flucythrinate	0.998086264
utralin	0.99961669	Fluchloralin	0.994865125
adusafos	0.998957049	Fludioxonil	0.99906409
arbophenothion	0.998919631	Flumetralin	0.999314275
arbophenothion methyl	0.987212444	Flumioxazin	0.993295923
inidon-ethyl	0.995907777	Fluotrimazole	0.998048853
IS 1,2,3,6-Tetra-hydrophthalimide	0.995423132	Fluquinconazol	0.99941145
Ilodinafop-propargyl	0.993635698	Fluvalinate (Tau)	0.994672664
Chlorfenapyr	0.999057548	Fonofos	0.999106042
Chlorfenprop methyl	0.998813165	Formothion	0.999287337
Chlorfenson /Ovex	0.999135823	Furalaxyl	0.99916366
thlorfenvinphos	0.999093123	Halfenprox	0.990197591
hlormephos	0.998383875	Heptacloro-epoxido-A-endo (cis)	0.998631709
	0.998562723	Heptacloro-epoxido-A-erido (cis)	0.99819743
hlorpropham Iortion			
	0.975372542	Heptachlor	0.999479566
hlozolinate	0.998486175	Heptenophos	0.998630245
rimidine	0.998782904	Hexachlorocychlohexane-alfa	0.999450172
yanofenphos	0.998919631	Hexaconazole	0.999224733
yanophos	0.998731622	Hexazinone	0.998034805
ycloate	0.999135817	Indoxacarb	0.997968095
yflufenamid	0.999161703	Iodofenphos	0.999332257
yfluthrin	0.998741963	Iprodione	0.997695069
ypermethrin	0.997370526	Isobenzan	0.998425394
yproconazole	0.998974836	Isocarbophos	0.99880613
yprodinil	0.999115342	Isodrin	0.998901603
hinomethionate	0.998256561	Isofenphos	0.99858637
hlordane (CIS)	0.998506236	Isofenphos-methyl	0.998971183
hlorflurenol-methyl	0.999313753	Isomethiozin	0.999269117
hloropropylate	0.997820634	Isopropalin	0.999300247
hlorothalonil	0.999210031	Isoprothiolane	0.998929638
hlorpyrifos – ethyl	0.998568648	Kresoxim-methyl	0.998635139
hlorpyrifos – methyl	0.999224693	Lambda Cyhalothrin	0.999275047
CPA (Clortal dimetil)	0.998981624	Lenacile	0.998788016
DD-o,p (Mitotane)	0.998890375	Leptophos	0.998874746
eltamethrin	0.997991024	Lindane-gamma	0.999450172
liazinone	0.998518326	Malathion	0.996880777
iclofop-methyl	0.998777327	Mefenpyr-diethyl	0.997472144
ricofol, 4,4	0.998832171	Mepanipyrim	0.998854165
ichlobenil (Benzonitrile, 2,6-dichloro-)	0.99907646	Metalaxyl	0.998927861
Dichlofenthion	0.998759718	Metazachlor	0.999315932
Dichloran (Botran)	0.99916187	Methamidophos	0.991286302
ichlorvos	0.998739233	Methidation	0.998985109
ieldrin	0.998706712	Methoxychlor	0.995563934
ifenoconazole	0.998548285	Metolachlor	0.998984445
iflufenican	0.998751621	Mevinphos	0.998805054
Dimethomoph	0.996333623	Mirex	0.999450884
Diniconazole	0.999205997	Myclobutanil	0.998623477

Discussion

Pesticide analysis is extremely challenging due to the number of pesticide compounds that one might be looking for. 268 pesticides were included in the developed method. All the compounds were monitored with three characteristic ions that provide adequate selectivity for their determination. High resolution applied for obtaining such ions ensure a drastic diminution of interferences and elimination of matrix effect. It reduces significantly the risk of false positive or negative results. All the compounds were registered in the software for automatic detection of the compounds in target mode. The highest intensity ion is used for quantification of the compounds by monitoring the extracted ion chromatogram. Chromatographic peaks were quantified by peak area relative to the one of the internal standards. The other two ions were used for confirming the results. Mass accuracy resulted very useful for increasing reliability of the results. In Figure 1, a total ion chromatogram obtained with the proposed experimental conditions is shown for an apple extract spiked at a concentration level of

Calibration was performed using three replicates of each calibration point. The working range for every compound was calculated and considered a linear calibration because it is the most typical calibration function selected in routine laboratories. Figure 2 shows an example of the linearity with the results of the pesticide Atrazine. All the proposed working ranges generated a R2 higher or equal to 0.99 and adequate recoveries for all the studied concentrations (**Table 1**). An example of the chromatographic peaks obtained while monitoring the quantification ion of one of the studied pesticides for the calibration curve can be seen in Figure 3. This shows the stability of the retention ime for the pesticide. The recovery and precision of the method have been calculated at 0.01 and 0.1 mg/kg (n=5). Recoveries were considered as acceptable when they were between 70 and 120 %.

Over 200 real samples were analyzed to evaluate the robustness of the chromatographic method and stationary phase on the Zebron ZB-5MSPLUS GC column. Different fruits and vegetables were tested. A selection of matrices were used here as an example including oranges, lemons and bananas, to detect trace levels of pesticides in them (Figures 4-6).

Conclusion

The study here demonstrates detection and recovery of 268 multi pesticide compounds from various fruit matrices. In addition, the method is linear over a wide range to accommodate trace level detection

The Zebron ZB-5MSPLUS GC column not only gave adequate separation and inertness, but also provided reproducible retention with multiple injections of real samples and proving the robustness of

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures
© 2022 Phenomenex. Inc. All rights reserved.