

LC-MS/MS Analysis of Anionic Polar Pesticides in Fruits and Vegetables using a Venusil HILIC column

Pietro Azzone¹, Marco Loperfido¹ and Luigi Margarucci²

¹EuroQualitylab S.r.l., Via Cristoforo Castellaneta, 47, 70023 Gioia del Colle (BA), Italy

²phenomenex S.r.l., Via M. Serenari 15/D, 40013 Castel Maggiore (BO), Italy

Overview

Many polar pesticides used in conventional agriculture are difficult to retain on standard C18 reversed phase HPLC columns.

In this application note we show a fast and robust method for the LC-MS/MS determination and quantification of several common anionic polar pesticides in fruits and vegetables after sample preparation using the QuPPe method. As the samples we tested were from plant origin, we followed the QuPPe-PO-Method suggested by the EU Reference Laboratories for Residues of Pesticides – Single Residue Methods (EURL-SRM).

Experimental

The experiments were performed on a Shimadzu® Nexera® system connected to a SCIEX® 6500+ triple quadrupole MS detector. The LC separation was performed on an Agela Venusil HILIC column under reversed phase gradient conditions.

LC Conditions

Column: Venusil HILIC 3 µm

Dimension: 100 x 2.1 mm

Part No.: VH931002-0

Mobile Phase: A: 0.1 % Formic Acid in Water

B: 0.1 % Formic Acid in Acetonitrile

Gradient:	Time(min)	%B
	0.5	5
	1.0	5
	5.0	65
	5.1	90
	8.0	90
	8.1	5

Flow Rate: 0.4 mL/min

Injection: 5 µL

Column Temperature: 40 °C

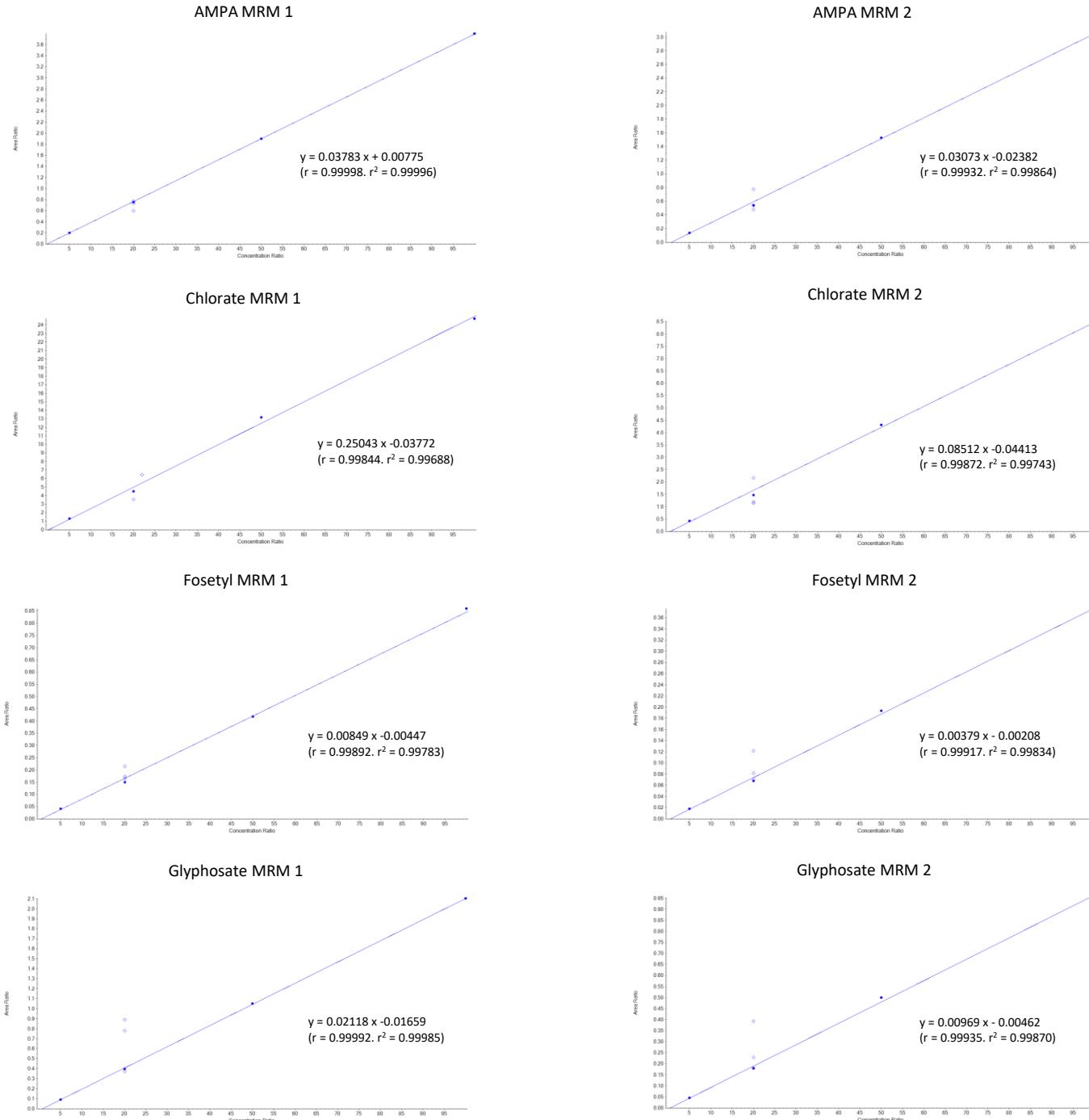
Detection: MSD

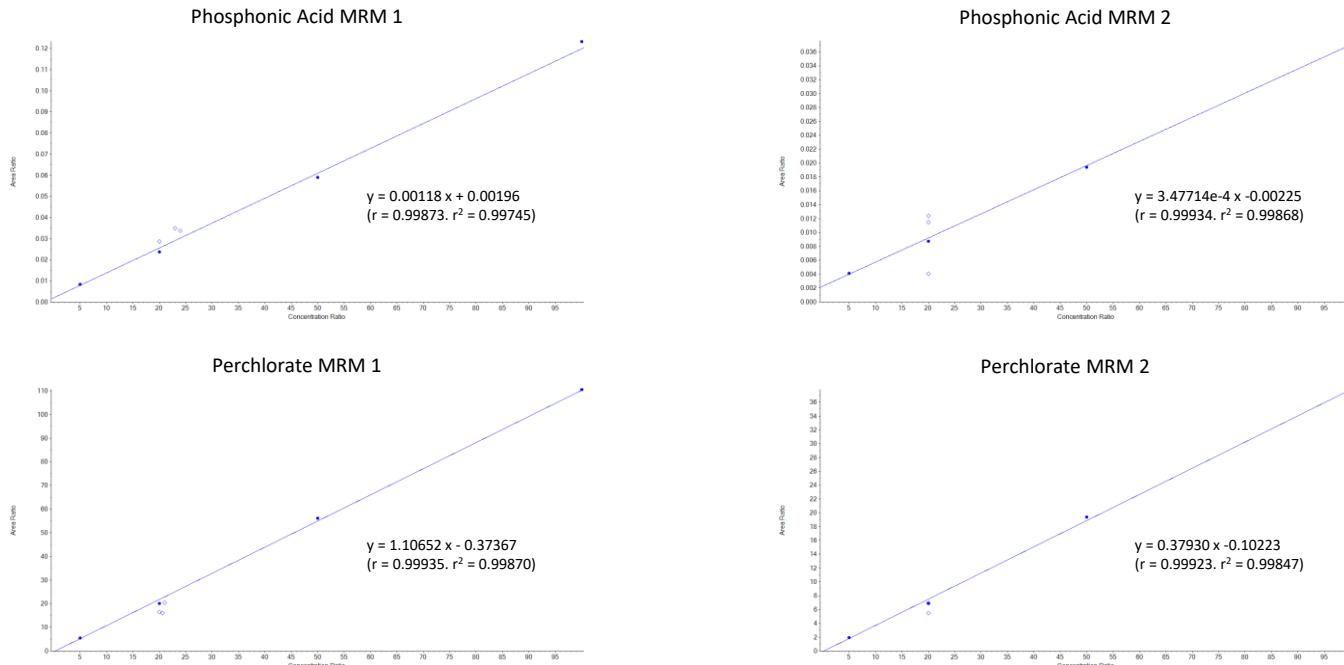
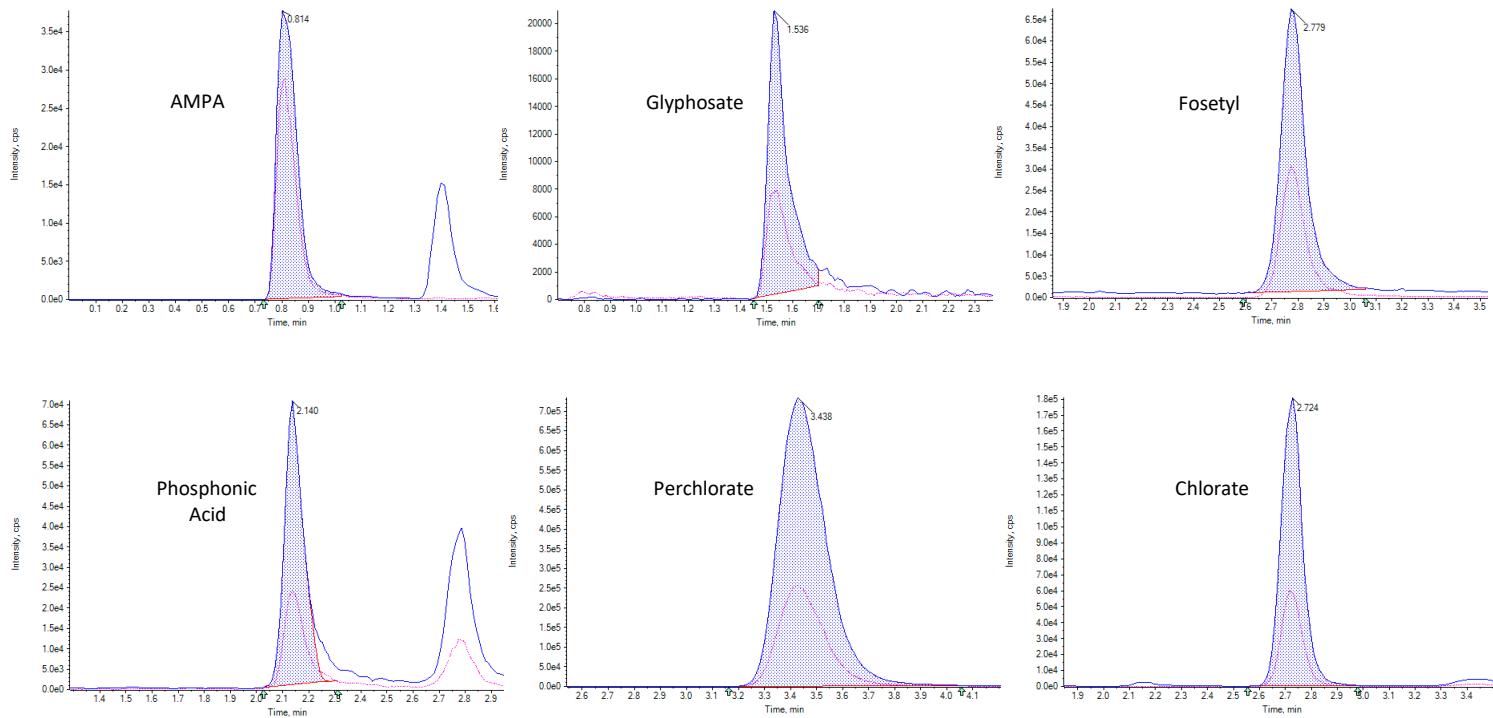
MS Conditions

Table 1. Source Parameters

Parameter	Value(-)
Gas Temp (°C)	450
Nebulizer Gas. GS1 (psi)	35
Heater Gas. GS2 (psi)	25
Curtain Gas (psi)	25
Ion Spray Voltage (V)	4500
CAD Gas (psi)	9

MS Conditions (continued)


Table 2. MRM Transitions



Name	Q1 (m/z)	Q3 (m/z)	Expected t_R (min)	Start t (min)	End t (min)	Collision Energy (V)
AMPA ISTD	112.00	63.00	0.8	0.0	1.6	-28
AMPA 1	110.00	63.00	0.8	0.0	1.6	-24
AMPA 2	110.00	79.00	0.8	0.0	1.6	-34
Chlorate ISTD	89.00	71.00	2.7	1.8	3.5	-28
Chlorate 1	83.00	67.00	2.7	1.8	3.5	-28
Chlorate 2	85.00	69.00	2.7	1.8	3.5	-30
Fosetyl ISTD	114.00	82.00	2.7	1.9	3.5	-20
Fosetyl 1	109.00	81.00	2.7	1.9	3.5	-20
Fosetyl 2	109.00	63.00	2.7	1.9	3.5	-38
Glyphosate ISTD	171.00	63.00	1.5	0.7	2.4	-27
Glyphosate 1	168.00	63.00	1.5	0.7	2.4	-27
Glyphosate 2	168.00	79.00	1.5	0.7	2.4	-50
Glyphosate 3	168.00	81.00	1.5	0.7	2.4	-21
Phosphonic Acid ISTD	87.00	85.00	2.1	1.3	2.9	-21
Phosphonic Acid 1	81.00	78.80	2.1	1.3	2.9	-21
Phosphonic Acid 2	81.01	63.00	2.1	1.3	2.9	-32
Perchlorate ISTD	107.00	89.00	3.4	2.5	4.2	-33
Perchlorate 1	99.00	83.00	3.4	2.5	4.2	-33
Perchlorate 2	101.00	85.00	3.4	2.5	4.2	-35

Calibration Curves and Chromatograms

Figure 1. Calibration Curves

Figure 1. Calibration Curves (continued)**Figure 2.** XICs

Table 3. Recovery data for various fruit and vegetable matrices

Analyte	Grape			Tomato			Tangerine		
	Spiked Conc. (ppb)	Exp. Conc. (ppb)	Accuracy (%)	Spiked Conc. (ppb)	Exp. Conc. (ppb)	Accuracy (%)	Spiked Conc. (ppb)	Exp. Conc. (ppb)	Accuracy (%)
AMPA 1	20	22.1	110.59	20	16.9	84.56	20	18.8	94.09
AMPA 2	20	31.4	156.95	20	20.5	102.43	20	20.9	104.64
Chlorate 1	20	16.6	83.22	20	14.7	73.36	20	15.1	75.25
Chlorate 2	20	17.1	85.53	20	14.8	74.12	20	15.9	79.37
Fosetyl 1	20	21.6	108.00	20	20.6	102.96	20	19.6	97.80
Fosetyl 2	20	23.1	115.50	20	21.4	106.97	20	21.1	105.34
Glyphosate 1	20	21.7	108.47	20	18.8	94.03	20	16.9	84.55
Glyphosate 2	20	20.6	103.24	20	19.8	98.96	20	19.5	97.72
Phosphonic Acid 1	30	29.4	98.02	20	21.6	108.13	28	29.3	104.65
Phosphonic Acid 2	30	34.2	113.87	20	19.6	98.19	28	29.8	106.37
Perchlorate 1	20	15.6	78.06	20	15.7	78.31	20	19.6	97.94
Perchlorate 2	20	15.4	76.93	20	15.4	76.99	20	19.4	97.04

Conclusion

The presented gradient reversed phase HPLC method using a Venusil HILIC column for the analysis of polar pesticides is a robust solution for this demanding application. The recovery of the analytes (**Table 3**) and linearity of the method for the tested analytes (**Figure 1**) demonstrates the suitability of this method for the routine analysis in food testing laboratories.

Need a different column size or sample preparation format?

No problem! We have a majority of our available dimensions up on www.phenomenex.com, but if you can't find what you need right away, our super helpful Technical Specialists can guide you to the solution via our online chat portal www.phenomenex.com/LiveChat.

Australia
t: +61 (0)2-9428-6444
auinfo@phenomenex.com

Austria
t: +43 (0)1-319-1301
anfrage@phenomenex.com

Belgium
t: +32 (0)2 503 4015 (French)
t: +32 (0)2 511 8666 (Dutch)
beinfo@phenomenex.com

Canada
t: +1 (800) 543-3681
info@phenomenex.com

China
t: +86 400-606-8099
cninfo@phenomenex.com

Czech Republic
t: +420 272 017 077
cz-info@phenomenex.com

Denmark
t: +45 4824 8048
nordicinfo@phenomenex.com

Finland
t: +358 (0)9 4789 0063
nordicinfo@phenomenex.com

France
t: +33 (0)1 30 09 21 10
franceinfo@phenomenex.com

Germany
t: +49 (0)6021-58830-0
anfrage@phenomenex.com

Hong Kong
t: +852 6012 8162
hkinfo@phenomenex.com

India
t: +91 (0)40-3012 2400
indiainfo@phenomenex.com

Indonesia
t: +62 21 5010 9707
indoinfo@phenomenex.com

Ireland
t: +353 (0)1 247 5405
ireinfo@phenomenex.com

Italy
t: +39 051 6327511
italiainfo@phenomenex.com

Japan
t: +81 (0) 120-149-262
jpinfo@phenomenex.com

Luxembourg
t: +31 (0)30-2418700
nlinfo@phenomenex.com

Mexico
t: 01-800-844-5226
tecnicomx@phenomenex.com

The Netherlands
t: +31 (0)30-2418700
nlinfo@phenomenex.com

New Zealand
t: +64 (0)9-4780951
nzinfo@phenomenex.com

Norway
t: +47 810 02 005
nordicinfo@phenomenex.com

Poland
t: +48 22 104 21 72
pl-info@phenomenex.com

Portugal
t: +351 221 450 488
ptinfo@phenomenex.com

Singapore
t: +65 800-852-3944
sginfo@phenomenex.com

Slovakia
t: +420 272 017 077
sk-info@phenomenex.com

Spain
t: +34 91-413-8613
espinfo@phenomenex.com

Sweden
t: +46 (0)8 611 6950
nordicinfo@phenomenex.com

Switzerland
t: +41 (0)61 692 20 20
swissinfo@phenomenex.com

Taiwan
t: +886 (0) 0801-49-1246
twinfo@phenomenex.com

Thailand
t: +66 (0) 2 566 0287
thaiinfo@phenomenex.com

United Kingdom
t: +44 (0)1625-501367
ukinfo@phenomenex.com

USA
t: +1 (310) 212-0555
info@phenomenex.com

All other countries/regions
Corporate Office USA
t: +1 (310) 212-0555
info@phenomenex.com

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country/region, contact Phenomenex USA, International Department at international@phenomenex.com

BE-HAPPY™
GUARANTEE

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right.
www.phenomenex.com/behappy

Terms and Conditions

Subject to Phenomenex Standard Terms and Conditions, which may be viewed at www.phenomenex.com/TermsAndConditions.

Trademarks

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of Phenomenex, Inc. or their respective owners in the United States and/or certain other countries.

Disclaimer

Phenomenex is not affiliated with Shimadzu Corp. Agela Technologies is a Phenomenex company.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures.

© 2021 Phenomenex, Inc. All rights reserved.

