TN-1241

APPLICATIONS

Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates using LC-MS/MS with a Synergi[™] Fusion-RP HPLC Column

Xianrong (Jenny) Wei, Laura Snow, and Ryan Splitstone Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA

Introduction

The tricarboxylic acid (TCA) cycle is a critical metabolic pathway present in a majority of living organisms.¹ In addition to its importance to normal life function, the TCA cycle has been the focus of additional research because of its implications in metabolomics for cancerous cells. For instance, several research groups have studied the metabolism of citrate between healthy and cancerous cells for diagnosis purposes and targeting of cancer therapies.^{2,3} Because of the importance of the TCA cycle, several methodologies have been proposed for the analytical monitoring of metabolites from a range of biological matrices.

Presently, many of the published methods for the analysis of TCAs utilizes either enzymatic, Nuclear Magnetic Resonance (NMR), or Liquid Chromatography-Mass Spectroscopy (LC-MS) as the analytical technique for the detection and quantification of the cycle's intermediates.^{4,5} However, there exists significant challenges to the detection and quantification of these metabolites within the aforementioned analytical techniques. For instance, enzymatic techniques often rely on indirect detection about TCAs.⁶ In the case of NMR, it does allow for direct monitoring, however it lacks the same sensitivity as LC-MS/MS and is generally a less available technique.

Therefore, presented in this technical note is a reference method for the simultaneous reversed phase analysis of TCA intermediates by LC-MS/MS with a focus on tricarboxylic acids (Citric, Isocitric, Malic, Succinic, Lactic, Glutamic and Fumaric acid) and a deuterated internal standard (Citric acid-D4) in a human biological matrix.

The analytical challenges were defined as adequate reversed phase chromatographic retention, a mobile phase system compatible with mass spectroscopy (MS) detection, baseline separation of the critical isomers Citric/isocitric acid, inherently high endogenous TCA levels within biological matrices, overall analyte stability, peak shape, and TCA's pH sensitivity.

In this technical note, the goal was to develop an LC-MS/MS assay able to analyze tricarboxylic acids out of a human serum albumin matrix over a dynamic range of concentrations and demonstrate acceptable accuracy and precision in reference to GLP guidance. In addition, the reference method should be a fast and reproducible assay, easily implemented in most laboratories with standard analytical equipment.

Experiment

Analytical reference standards for Citric, Isocitric, Malic, Succinic, Lactic, and Glutamic acid, deuterated internal Citric acid standard, Dulbecco's phosphate buffered saline and human serum albumin powder (HSA, fatty acid free) were obtained through Sigma-Aldrich[®]. The Synergi Fusion-RP, a fully porous polar embedded C18 with trimethylsilyl (TMS) end-capping was selected after an extensive column screening was performed to determine the most most applicable selectivity. An Agilent[®] 1260 Infinity HPLC system was used for this investigation and a SCIEX[®] Triple Quad[™]4500 MS/MS was used for detection. The Triple Quad 4500 was equipped with an ESI source capable of in-analysis polarity switching and eQ[™] electronics which can polarity switching in 50 ms and has scan speeds of 20,000 Da/s. This allowed for simultaneous detection of TCA using both negative and positive ionization mode in one run.

Sample preparation of the human serum albumin (HSA, fatty acid free) that was used for all standards and QC's preparation, consisted of taking 420 mg of HSA and dissolving it in 12 mL of Dulbecco's phosphate buffered saline solution (35 mg/mL), mixing, and then stored between 2 – 8 °C. An internal standard solution of Citric acid-D4 was prepared in 0.1 % Formic acid at a concentration of 5 μ g/mL.

Preparation of standards consisted of two sets of standards at an eight-point concentration range of 20, 45, 150, 300, 500, 800, 1000, and 2000 ng/mL. Six sets of Quality Control (QC) samples were prepared at four concentrations of 60, 200, 800, and 1500 ng/mL, and extracted.

Acidified protein precipitation was used for sample extraction. First, 10 μ L of spiked human serum albumin was added to a 1.8 mL microcentrifuge tube, then 10 μ L of working internal standard (Citric acid-D4 at 5 μ g/mL) was added and mixed with 100 μ L 5 % Trichloroacetic acid) for approximately 1 minute. The mixture was then centrifuged at 18000 rpm for 10 minutes. 100 μ L of the supernatant was transferred to a Verex[™] autosampler vial and positioned into the autosampler.

The mobile phase consisted of a premixed ratio of Water/Methanol (95:5) with 0.2 % Formic acid added to the aqueous portion. The column heating oven was set to 45 °C, injection volume at 10 μ L, and a flow rate of 0.85 mL/min was used for this example.

Mass Spectrometer ESI source parameters are referenced in **Table 1** and **Table 2** and additionally contain the mass transitions used for this analysis.

Table 1.ESI ionization source parameters.

NEGATIVE ION POSITIVE* ION Curtain Gas (CUR): 20 20 Collision Gas (CAD): 6 6 700 Temperature (TEM): 700 Ion Source Gas 1 (GS1): 50 50 Ion Source Gas 2 (GS2): 50 50 IonSpray Voltage (IS): -4000 4000 Entrance Potential (EP): -10 10 Collision Cell Exit Potential (CXP): -10 10

 $\ensuremath{^*\!G}\xspace{I}$ duration mode, all others were under negative ionization mode

APPLICATIONS

TCA mass transitions.

ID	Q1 Mass (Da)	Q3 Mass (Da)	Dwell (msec)	DP	CE
Citric acid 1	191	87	25	-35	-22
Citric acid 2	191	111	25	-35	-12
Isocitric acid 1	191	155	25	-35	-18
Isocitric acid 2	191	129	25	-30	-18
Malic acid 1	133	115	25	-35	-14
Malic acid 2	133	71	25	-35	-19
Succinic acid 1	117	99	50	-30	-14
Succinic acid 2	117	73	50	-30	-15
Fumaric acid 1	115	71	50	-25	-10
Fumaric acid 2	115	98	50	-25	-10
Lactic acid 1	89	43	50	-34	-20
Lactic acid 2	89	41	50	-34	-20
IS- Citric acid-D4	195	114	50	-35	-12
Glutamic acid 1+	148	102	50	40	15
Glutamic acid 2+ + positive ion	148	84	50	40	20

Results

Figure 1 displays a neat standard solution of seven TCAs and internal standard at a concentration of 500 ng/mL and with an overlay that shows all analytes in both negative and positive mode. **Figure 2** is a representative chromatogram of the Quality Control High (QCH) standard at 1500 ng/mL in human serum albumin without Fumaric acid due to the compound stability issue in the matrix of HSA.

Figures 3 & 4 are representative chromatograms of blank human serum albumin Figure 3 versus the lower limit of quantitation in a matrix at 45 ng/mL concentration Figure 4.

0.6

0.8

1.0

1.2

1.6

Time

1.4

1.8

2.0

2.2

2.4

2.6

0.4

≩ 0.0 0

0.2

min

2.8

Table 3.

Summary of accuracy and precision.

Sample ID	QC1	QC2	QC3	QC4
Norminal Concentration (ng/mL)	60 (ng/mL)	200 (ng/mL)	800 (ng/mL)	1500 (ng/mL)
Positive ion	Glutamic acid			, , , , , , , , , , , , , , , , , , , ,
1	60.3	191	750	1550
2	53 5	18/	765	1/30
2	50.0	101	700	1500
4	30.2 *100	100	770	1500
4	139	180	779	1560
5	51.4	187	783	1500
6	57.8	187	787	1520
Mean	56.2	186	772	1510
S.D.	3.66	3.35	13.6	46.5
% CV	6.51	1.8	1.77	3.08
% Theoretical	93.7	93	96.5	101
Negative ion	Citric acid			
1		*424	750	1370
2		211	*1060	1510
3		103	772	1540
4		010	750	1610
4		213	7.52	1010
5		189	747	1390
6		201	943	1540
Mean		201	793	1493
S.D.		10.6	84.5	94
% CV		5.27	10.7	6.29
% Theoretical		101	99.1	100
Negative ion	Malic acid			
1		217	693	1410
2		208	812	1380
3		184	733	1480
1		207	702	1560
5		206	807	1/80
6		174	070	1540
		174	972	1540
Mean		199	/8/	14/5
S.D.		16.5	104	70.4
% CV		8.3	13.2	4.77
% Theoretical		100	98.3	98.3
% Theoretical Negative ion	Succinic acid	100	98.3	98.3
% Theoretical Negative ion 1	Succinic acid	100	98.3 718	98.3 1590
% Theoretical Negative ion 1 2	Succinic acid	100	98.3 718 916	98.3 1590 1390
% Theoretical Negative ion 1 2 3	Succinic acid	100	98.3 718 916 898	98.3 1590 1390 1500
% Theoretical Negative ion 1 2 3 4	Succinic acid	100	98.3 718 916 898 760	98.3 1590 1390 1500 1490
% Theoretical Negative ion 1 2 3 4 5	Succinic acid	100	98.3 718 916 898 760 910	98.3 1590 1390 1500 1490 1500
% Theoretical Negative ion 1 2 3 4 5 6	Succinic acid	100	98.3 718 916 898 760 910 743	98.3 1590 1390 1500 1490 1500 1470
% Theoretical Negative ion 1 2 3 4 5 6 Moan	Succinic acid	100	98.3 718 916 898 760 910 743 894	98.3 1590 1390 1500 1490 1500 1470
% Theoretical Negative ion 1 2 3 4 5 6 Mean S D	Succinic acid	100	98.3 718 916 898 760 910 743 824 02	98.3 1590 1390 1500 1490 1500 1470 1490 64.2
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. V. OV	Succinic acid	100	98.3 718 916 898 760 910 743 824 93	98.3 1590 1390 1500 1490 1500 1470 1490 64.2
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31
% Theoretical Negative ion 1 2 3 4 5 5 6 Mean S.D. % CV % Theoretical	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2
% Theoretical Negative ion 1 2 3 4 5 6 6 Mean S.D. % CV % Theoretical Negative ion	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768	98.3 1590 1390 1500 1490 1500 1470 1470 64.2 4.31 99.2
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 11.3 103	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1400 1350
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779	98.3 1590 1390 1500 1490 1470 1470 1470 64.2 4.31 99.2 1420 1420 1420 1420 1420 1420 1450 1610
% Theoretical Negative ion 1 2 3 4 5 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1420 1420 1420 1440
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 779 791 707	98.3 1590 1390 1500 1490 1500 1470 1470 1470 64.2 4.31 99.2 1420 1420 1440 1350 1610 1440 1680
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 11.3 103 768 1040 898 779 791 707 821	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1483
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D.	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean 5 6 Mean S.D. % CV	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4	98.3 1590 1390 1500 1490 1490 64.2 4.31 99.2 1420 1420 1420 1420 1420 1440 1350 1610 1440 1680 1483 130.6 8.81
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean 5 6 Mean S.D. % CV % Theoretical	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 768 1040 898 779 791 707 821 119.8 14.4 104	98.3 1590 1390 1500 1490 1490 64.2 4.31 99.2 1420 1420 1420 1420 1420 1440 1350 1610 1440 1680 1483 130.6 8.81 98.9
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 791 707 791 707 821 119.8 14.4 104	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 0	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104 908	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1350 1610 1443 130.6 8.81 98.9 1280
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 % CV % Theoretical Negative ion 1 2 0	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 114.4 104 908 914	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 119.8 14.4 104 908 914 910	98.3 1590 1390 1500 1490 1470 1470 1490 64.2 4.31 99.2 1420 1420 1420 1420 1420 1440 1350 1610 1443 130.6 8.81 98.9 98.9 1280 1410 1510
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4	Succinic acid		98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104 908 914 910 826	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 791 707 791 707 821 119.8 14.4 104 908 914 910 826 783	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440 1480
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Negative ion 1 2 3 4 5 6	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104 908 914 910 826 7783 850	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1350 1610 1440 130.6 8.81 98.9 1280 1410 1510 1440 1480 1590
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean 1 2 3 4 5 6 Mean 5 6 Mean	Succinic acid	100	98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 114.4 104 908 914 908 914 908 914 908 914 908 914 908 914 908 914 908 914 908 914 908 914 950 826 783 850 865	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440 1510 1440 1590 1452
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean 5 6 Mean 5 6 Mean 5 6 Mean S.D.	Succinic acid		98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104 908 914 910 826 783 850 865 54.3	98.3 1590 1390 1500 1490 1500 1470 1470 1490 64.2 4.31 99.2 1420 1420 1420 1420 1420 1420 1440 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 150 1452 104.6
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean 3 4 5 6 Mean S.D. % CV	Succinic acid		98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 821 119.8 14.4 104 908 914 910 826 783 850 865 54.3 6.28	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1483 1280 1410 1483 1280 1440 1510 1440 1510 1483 1280 1440 1510 1440 1510 1483 1280 1440 1510 1440 1510 1483 1280 1440 1510 1440 1510 1440 1510 1440 1510 1483 1280 1440 1510 1440 1510 1440 1510 1440 1510 1440 1510 1440 1450 1483 1280 1440 1440 1510 1440 1450 1460 1483 1280 1440 1460 1483 1280 1440 1400 1400 1280 1440 1400 1400 1280 1440 1400 1440 1510 1440 1440 1510 1440 1440 1510 1440 1510 1440 1452 104.6 7.2
% Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical Negative ion 1 2 3 4 5 6 Mean S.D. % CV % Theoretical	Succinic acid		98.3 718 916 898 760 910 743 824 93 11.3 103 768 1040 898 779 791 707 791 707 791 707 791 707 821 119.8 14.4 104 908 914 910 826 783 850 865 54.3 6.28 108	98.3 1590 1390 1500 1490 1500 1470 1490 64.2 4.31 99.2 1420 1400 1350 1610 1440 1680 1483 130.6 8.81 98.9 1280 1410 1510 1440 1510 1440 1550 1452 104.6 7.2 96.8

Figure 5.

Calibration curves in the matrix for Glutamic, Malic, Succinic, Lactic, Citric, and Isocitric acid.

Та	b	le	4.

TCA's dynamic curve ranges LLOQ to ULOQ.

Sample ID	LLOQ (ng/mL)	ULOQ (ng/mL)
Glutamic acid	20	2000
Citric acid	45	2000
Isocitric acid	150	2000
Malic acid	45	2000
Succinic acid	150	2000
Lactic acid	800	2000

Discussion

In this technical note, we addressed numerous analytical challenges associated with the analysis of TCAs within a biological matrix. Multiple reversed phase HPLC columns were screened to determine the most applicable stationary phase to improve selectivity/ retention of the TCAs and provide critical separation of the isomers citric and isocitric acid. **Figure 1** is a representative chromatogram of TCA standards with the Synergi[™] 4 µm Fusion-RP 150 x 3.0 mm HPLC column showing chromatographic separation of these critical isomers. The Synergi Fusion-RP displays polar retention and selectivity due to the polar embedded groups incorporated in the stationary phase.

As for detection, both positive and negative ionization modes were used to allow a single injection assay with a total run time of 3-minutes for all compounds as seen in **Figure 1**.

Figure 2 represents extracted human serum albumin Quality Control High (QCH) standard at 1500 ng/mL concentration. It demonstrated that Fumaric acid is not stable in this biological matrix with the current extraction process but exhibits acceptable reversed phase chromatography in neat solution, as seen in **Figure 1**. For the purpose of this example, we did not include Fumaric acid in the final accuracy and precision evaluation depicted in **Table 3**, **Table 4**, or **Figure 5**.

Figures 3 and **4** are a comparison of blank human serum albumin vs a 45 ng/mL spiked human serum albumin sample, which represented the lower limit of quantification in this matrix under negative ion mode. It was observed that biological based matrices exhibited an inherently high endogenous level of TCAs, which contributed additional constraints to the linear range of this method. The human serum albumin selected for this method was fatty acid free.

By selecting an appropriate stationary phase, we were able to use an MS compatible mobile phase that did not require any derivatization or ion-pairing agents. The mobile phase was premixed prior to use due to the sensitivity of the method to the aqueous solvent ratio and ensure the solution's consistent pH. The addition of Formic acid also aided in analyte stability and chromatographic peak shape.

The reference assay demonstrated acceptable accuracy and precision under GLP guidance, evidenced in **Table 3**. In addition, the assay demonstrated a dynamic calibration curve range (**Table 4** and **Figure 5**) and verified reproducibility in 2-4 levels of Quality Control standards (**Table 3**).

Conclusions

In this technical note, we investigated a reference method for the simultaneous analysis of six tricarboxylic acids out of a human serum albumin biological matrix, utilizing LC-MS/MS under reversed phase conditions. The method used Electron Spray Ionization (ESI) source with polarity switching, an appropriate stationary phase selectivity, and a mobile phase system that did not require any derivatization or the addition of an ion-pairing agent. This resulted in a fast and reproducible assay with a 3-minute analysis time. In addition, three different batches of Synergi Fusion-RP were tested to confirm method reproducibility. Assay ruggedness was demonstrated by more than 500 injections with no chromatographic change. The assay was able to analyze all six tricarboxylic acids over a dynamic range of concentrations and demonstrated acceptable accuracy and precision under GLP guidance. However, Fumaric acid was not included in the final accuracy and precision evaluation due to stability issues in the matrix. As for the Citric, Isocitric, Malic, Succinic, Lactic, and Glutamic acid, this reference method was shown to be a fast and reproducible assay that can be easily adopted and implemented in most laboratories.

References

- T. M. Devlin., The tricarboxylic acid cycle. Textbook of Biochemistry with Clinical Correlations., 1997, 4th, 231-266.
- J. E. McDunn, Z. Li, K. P. Adam et al., Metabolomic signatures of aggressive prostate cancer., The Prostate., 2013, 73(14), 1547-1560.
- L.C. Costello, R. B. Franklin, and P. Narayan., Citrate in the diagnosis of prostate cancer., The Prostate., 1999, 38(3), 237-245
- E. B. Cornel, G. A. H. J. Smits, J. E. De Ruijter et al., In vitro proton magnetic resonance spectroscopy of four human prostate cancer cell lines., The Prostate., 1995, 26(5), 275-280.
- K. Stenman, P. Stattin, H. Stenlund, K. Riklund, G. Grobner, and A. Bergh., 1H HRMAS NMR derived bio-markers related to tumor grade, tumor cell fraction, and cell proliferation in prostate tissue samples., Biomarker Insights., 2011, 6, 39-47.
- M. Petrarulo, P. Facchini, E. Cerelli, M. Marangella, and F. Linari., Citrate in urine determined with a new citrate lyase method., Clinical Chemistry., 1995, 41(10), 1518-1521.
- D. S. Wishart, Quantitative metabolomic using NMR., TrAC Trends in Analytical Chemistry., 2008, 27(3), 228-237.

TN-1241

ICATIONS

Ordering Information

Synergi[™] Fusion-RP HPLC Columns

2.5 µm High Spe	ed Technology (HST) Colu	imns (mm)						
Phase	30 x 2.0	50 x 2.0	100 x 2.0	50 x 3.0	100 x 3.0	50 x 4.6		
Fusion-RP	00A-4423-B0	00B-4423-B0	00D-4423-B0	00B-4423-Y0	00D-4423-Y0	00B-4423-E0		
4 µm Microbore	and Minibore Columns (n	1m)					SecurityGuar	[.] d™ Cartridges (mi
Phase	50 x 1.0	150 x 1.0	30 x 2.0	50 x 2.0	75 x 2.0	150 x 2.0	250 x 2.0	4 x 2.0*
Fusion-RP	00B-4424-A0	00F-4424-A0	00A-4424-B0	00B-4424-B0	00C-4424-B0	00F-4424-B0	00G-4424-B0	AJ0-7556
								for ID: 2.0-3.0 m
4µm MidBore™ (Columns (mm)			SecurityGuard	Cartridges (mm)			
Phase	50 x 3.0	150 x 3.0	250 x 3.0	4 3	c 2.0*			
Fusion-RP	00B-4424-Y0	00F-4424-Y0	00G-4424-Y0	AJC	-7556			
				for ID: 2	.0-3.0 mm			
4 µm Analytical (Columns (mm)				SecurityGuard	Cartridges (mm)		
Phase	50 x 4.6	75 x 4.6	150 x 4.6	250 x 4.6	4 >	(3.0*		
Fusion-RP	00B-4424-E0	00C-4424-E0	00F-4424-E0	00G-4424-E0	AJO	-7557		
					for ID: 3	.2-8.0 mm		

* SecurityGuard Analytical cartridges require holder, Part No.: KJ0-4282

Australia t: +61 (0)2-9428-6444

auinfo@phenomenex.com

Austria t: +43 (0)1-319-1301 anfrage@phenomenex.com

Belgium t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch)

beinfo@phenomenex.com

Canada

t: +1 (800) 543-3681 info@phenomenex.com

China t: +86 400-606-8099 cninfo@phenomenex.com

Denmark t: +45 4824 8048 nordicinfo@phenomenex.com

Finland t: +358 (0)9 4789 0063 nordicinfo@phenomenex.com

France t: +33 (0)1 30 09 21 10 franceinfo@phenomenex.com

Germany t: +49 (0)6021-58830-0 anfrage@phenomenex.com

India t: +91 (0)40-3012 2400 indiainfo@phenomenex.com

Ireland t: +353 (0)1 247 5405 eireinfo@phenomenex.com

Italy t: +39 051 6327511 italiainfo@phenomenex.com

Luxembourg t: +31 (0)30-2418700 nlinfo@phenomenex.com Mexico t: 01-800-844-5226

- tecnicomx@phenomenex.com
- The Netherlands t: +31 (0)30-2418700 nlinfo@phenomenex.com

New Zealand t: +64 (0)9-4780951 nzinfo@phenomenex.com

Norway t: +47 810 02 005 nordicinfo@phenomenex.com

Portugal t: +351 221 450 488 ptinfo@phenomenex.com

Singapore t: +65 800-852-3944 sginfo@phenomenex.com

Spain t: +34 91-413-8613 espinfo@phenomenex.com

Sweden t: +46 (0)8 611 6950 nordicinfo@phenomenex.com

Switzerland t: +41 (0)61 692 20 20 swissinfo@phenomenex.com

Taiwan t: +886 (0) 0801-49-1246 twinfo@phenomenex.com

United Kingdom t: +44 (0)1625-501367 ukinfo@phenomenex.com

USA t: +1 (310) 212-0555 info@phenomenex.com

BE-HAPPY" guarantee

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com

Terms and Conditions Subject to Phenomenex Standard Terms & Conditions, which may be viewed at www.phenomenex.com/TermsAndConditions

Trademarks Irademarks Verex, Synergi, SecurityGuard, BE-HAPPY, and MidBore are trademarks of Phenomenex. Triple Quad[™] and eQ[™] are trademarks of AB SCIEX Ltd. SCIEX is a registered trademark, and AB SCIEX[™] is being used under license. Sigma-Aldrich is a registered trademark of Sigma-Aldrich, Inc. Agilent is a registered trademark of Agilent Technologies, Inc. Disclaimer

Comparative separations may not be representative of all applications. Phenomenex is not affiliated with Sigma-Aldrich, Inc., LLC or Agilent Technologies, Inc.

SecurityGuard is patented by Phenomenex. U.S. Patent No. 6,162,362 CAUTION: this patent only applies to the analytical-sized guard cartridge holder, and does not apply to SemiPrep, PREP or ULTRA holders, or to any cartridges.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures. © 2019 Phenomenex, Inc. All rights reserved.

TN66340219_W

Page 7 of 7