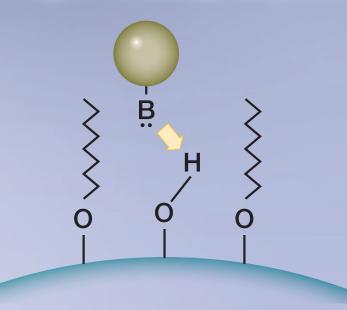

Hydrophobicity

High column hydrophobicity values indicate greater retention of carbon-containing analytes.

The Ultimate Guide to Reversed Phase HPLC/UHPLC Selectivity

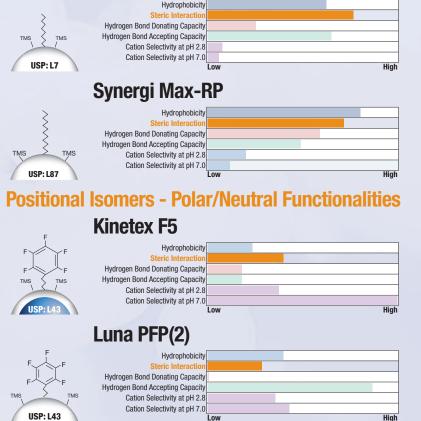
Isomers, Isobaric Compounds, and Shape Selectivity

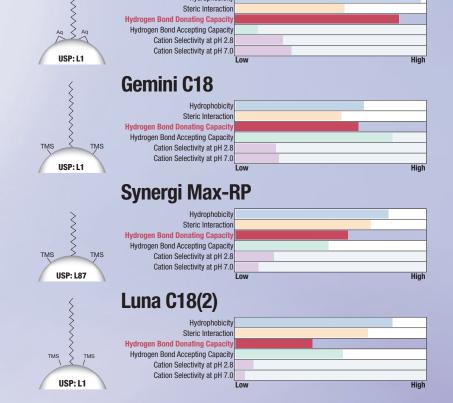


Steric Interactions

High column steric interaction values are best suited for the analysis of analytes that require separation based on size and shape differences.

Identify Differences in Shape Selectivity Luna C8(2)

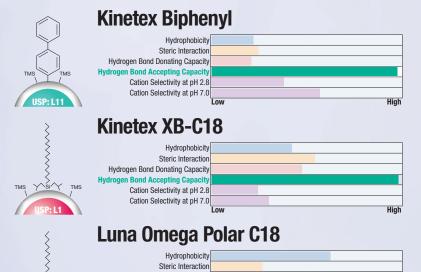

Non-ionized Bases and Oxygenor Halogen-containing Compounds



Hydrogen Bond Donating Capacity

Hydrogen bond donating groups on the silica surface interact with accessible functionalities containing a lone pair of electrons.

Synergi	Hydro-RP
	Hydrophobicity

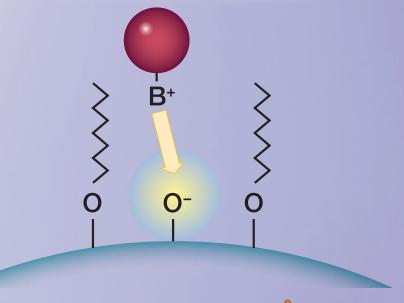


Hydroxyl- or Amine-containing Functionalities

Hydrogen Bond Accepting Capacity A

Hydrogen bond accepting groups on the silica surface interact with hydrogen bond donating functionalities on analytes.

High

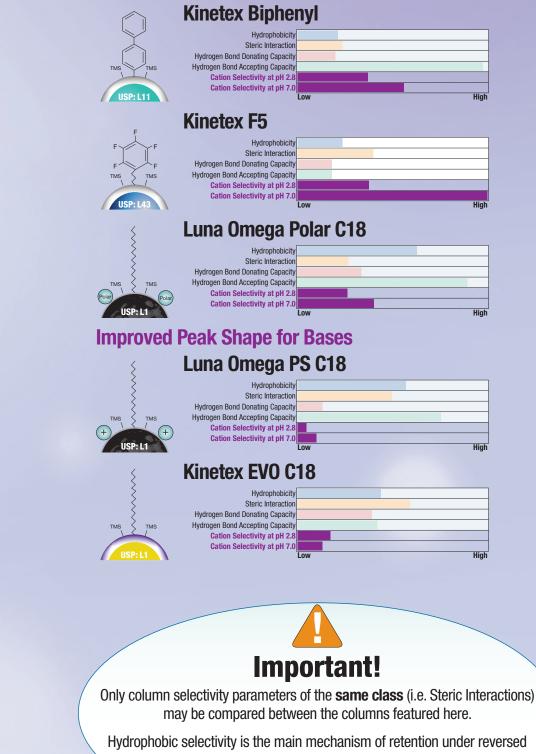

High

High

High

High

Polar Basic Compounds



Cation Selectivity

High column cation selectivity values will show higher retention for ionized bases.

Low column cation selectivity values will have less interaction and retention for ionized bases, but may have very good peak shape.

Increased Retention of Polar Bases

Which solid support is right for your analysis?

Performance Gains on ANY HPLC or UHPLC System

Core-Shell Particles

- Ultra-high efficiency at decreased backpressure (2.6 µm)
- 3 μm or better efficiencies at 5 μm pressures (5 μm)
- Easy method transfer between HPLC and UHPLC systems
- Highest efficiencies on UHPLC systems (1.3 μm and 1.7 μm)

Additional Selection Tips

Polar Acids

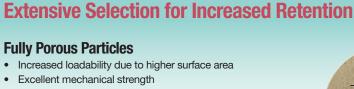
 Luna Omega PS C18 Phases (pH 8-12)

 Kinetex EVO C18 Gemini NX-C18

 Gemini C18 Gemini C6-Phenyl

Alkaline Mobile

 Kinetex F5 Kinetex Biphenyl • Luna PFP(2)


Compounds

Aromatic

X	Hydrogen Bond Donating Capacity	
TMS S TMS	Hydrogen Bond Accepting Capacity	
Polar Polar	Cation Selectivity at pH 2.8	
	Cation Selectivity at pH 7.0	
USP: L1	Low	High
	0 ! !® 040	
5	Gemini [®] C18	
Ş	Ludron bobioitu	
5	Hydrophobicity Starie Interaction	
Ś	Steric Interaction	
5	Hydrogen Bond Donating Capacity	
TMS TMS	Hydrogen Bond Accepting Capacity	
	Cation Selectivity at pH 2.8	
USP: L1	Cation Selectivity at pH 7.0	High
	2011	ing.
	Synergi Fusion-RP	
3	Synciyi rusion-nr	
>	Hydrophobicity	
< 5<	Steric Interaction	
$(Aq) \ge (Aq)$	Hydrogen Bond Donating Capacity	
255	Hydrogen Bond Accepting Capacity	
tựs < 🔀 tựs	Cation Selectivity at pH 2.8	
	Cation Selectivity at pH 7.0	
USP: L1	Low	High
<	Luna Omega PS C18	
3	Euna onnoga i o o lo	
Ś	Hydrophobicity	
3	Steric Interaction	
>	Hydrogen Bond Donating Capacity	
TMS S TMS	Hydrogen Bond Accepting Capacity	
	Cation Selectivity at pH 2.8	
	Cation Selectivity at pH 7.0	
USP: L1	Low	High
	Luma 010(0)	
5	Luna C18(2)	
Ş		
5	Hydrophobicity Steric Interaction	
ζ	Hydrogen Bond Donating Capacity	
<u>></u>	Hydrogen Bond Accepting Capacity	
	Cation Selectivity at pH 2.8	
	Cation Selectivity at pH 7.0	
USP: L1	Low	High

phase conditions. Within the column profiles the 5 different selectivity parameter classes are not on the same scale.

Aeris and Synergi are trademarks and Clarity, Gemini, Luna, Lux, and Kinetex are registered trademarks of Phenomene. Gemini and Kinetex EVO are patented by Phenomenex. U.S. Patent Nos. 7,563,367 and 8,658,038 and foreign counterparts © 2016 Phenomenex, Inc. All rights reserved.

Proteins

(>10 kDa)

XB-C18

XB-C8

Aeris[™] WIDEPORE

Aeris WIDEPORE

Aeris WIDEPORE C4

• Large range of scalable particle sizes and selectivities

Peptides

XB-C18

Chiral

(≤10 kDa) Compounds Aeris PEPTIDE Lux[®] Amylose-1 Lux Cellulose-1 Luna Omega PS C18 Lux Cellulose-4 Kinetex EVO C18 Lux i-Cellulose-5

www.Phenomenex.com

Synthetic

Oligonucleotides

Clarity[®] Oligo-XT

Clarity Oligo-RP