Modern Approaches for PFAS LC-MS/MS Analysis in Aqueous and Solid Matrices

()phenomenex

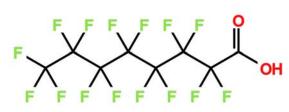
Overview

PFAS Background

Case Studies

- 1. SPE + LC-MS/MS
- 2. Large Volume Direct Inject + LC-MS/MS
- 3. QuEChERS from Food + UHPLC-MS/MS
- 4. Online SPE + LC-MS/MS
- 5. QuEChERS from Sediment + LC-MS/MS

Conclusion


Resources

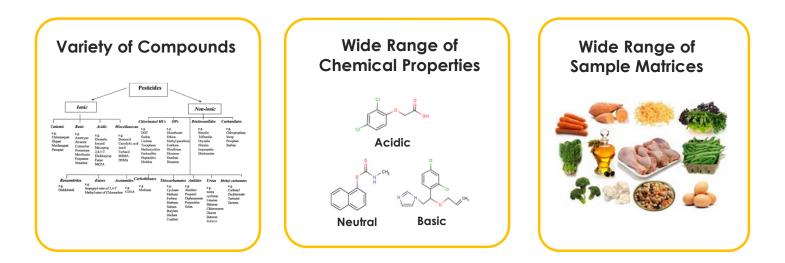
Acknowledgements

PFAS

Ophenomenex

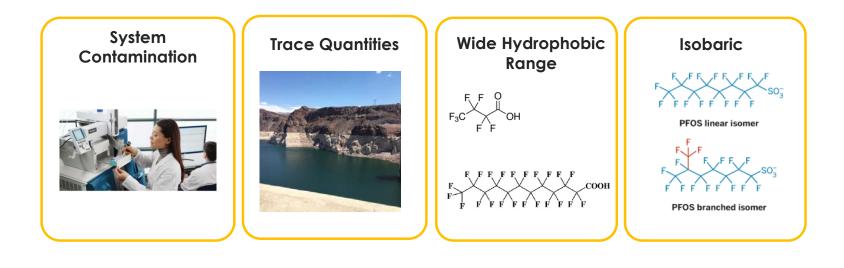
Environmental Testing

- PFAS Per and Polyfluorinated Alkyl Substance
- Repellent properties popular for consumer products like surface treatment protection, paper protection, and performance chemicals (i.e. firefighting foams)
- Trace levels found throughout global water sources
- Chemically stable, low reactivity, and resistant to degradation in aqueous environments - Important for use in a wide range of products and industrial applications
- Human exposure to PFAS residues linked to adverse health effects



EPA Guidelines for PFOA and PFOS In Drinking Water = More Testing

Environmental Testing


Typical Challenges

Ophenomenex

PFAS Specific Challenges

()phenomenex

The Strata[®]-X Product Line

Solid Phase Extraction

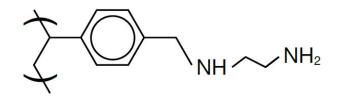
In SPE, a support particle is modified with different functional groups

- Silica or polymeric particles
- Wide range of functional groups (RP, IEX, NP)

Target analytes bind to the media

• Matrix interferences are washed away using different washing protocols

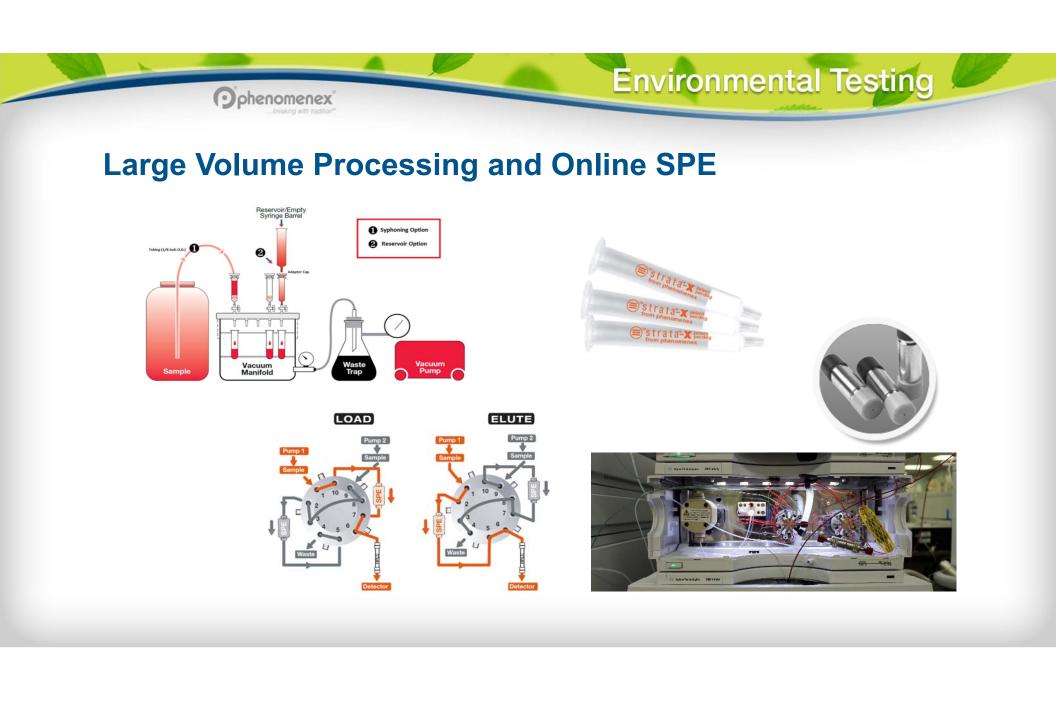
The key distinction is that you optimize your method to target & recover your analytes


More selective than QuEChERS

Strata[®]-X-AW and XL-AW Weak Anion-Exchange

()phenomenex

3 Mechanisms of Retention

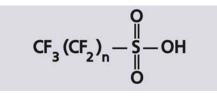


- Weak Anion-Exchange
- π-π Bonding
- Hydrophobic Interaction

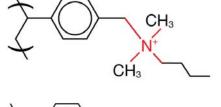
Select Your Particle and Pore Size

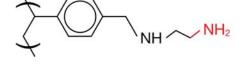
	Strata -X-AW, 33 µm, 85 Å	Strata-XL-AW, 100 µm, 300 Å
High Concentration Samples	V	
Small Target Analytes (< 10 kDa)	V	
Large Target Analytes (> 10 kDa)		V
Large Volume Samples		V
Viscous Samples		V

Ophenomenex"


Solid Phase Extraction

EPA method 5371. Reversed phase retention (Strata[®]-X)


Environmental Testing


Mixed Mode Anion-Exchange

1. Anion-Exchange + Strata-X

Strata-X-A Strong Anion-Exchanç

Strata-X-AW Weak Anion-Exchar

Ophenomenex

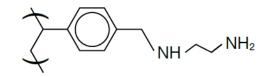
Solid Phase Extraction

Strata®-X-AW Weak Anion-Exchange

Condition: 3 x 5mL methanol

Condition: 2 x 5mL water

Load: 125 mL sample


Wash: 2 x 5 mL water

Bottle rinse: 5 mL 0.5% NH₄OH in methanol Elute: 3 x 5 mL 0.5% NH₄OH in methanol

Evaporate to dryness

Reconstitute with 50/50 methanol/water

3 Mechanisms of Retention

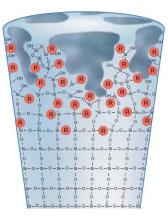
- Weak Anion-Exchange
- π-π Bonding

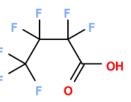
Environmental Testing

• Hydrophobic Interaction

Environmental Testing

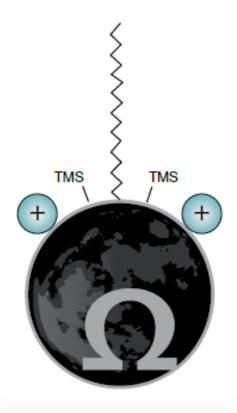
Gemini[®] TWIN™ Technology

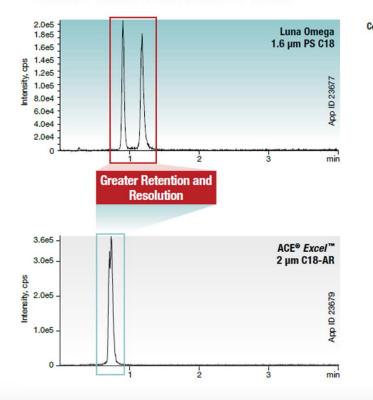

Ophenomenex


Gemini columns are rugged reversed phase HPLC columns that offer extended lifetime at extreme pH conditions and excellent stability for reproducible, high efficiency separations.

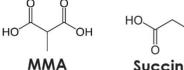
- Take full advantage of high and low pH conditions (pH 1-12) to manipulate selectivity
- Expect longer column lifetime
- For analytical and preparative separations of basic and acidic compounds

PFBA retention and good peak shape



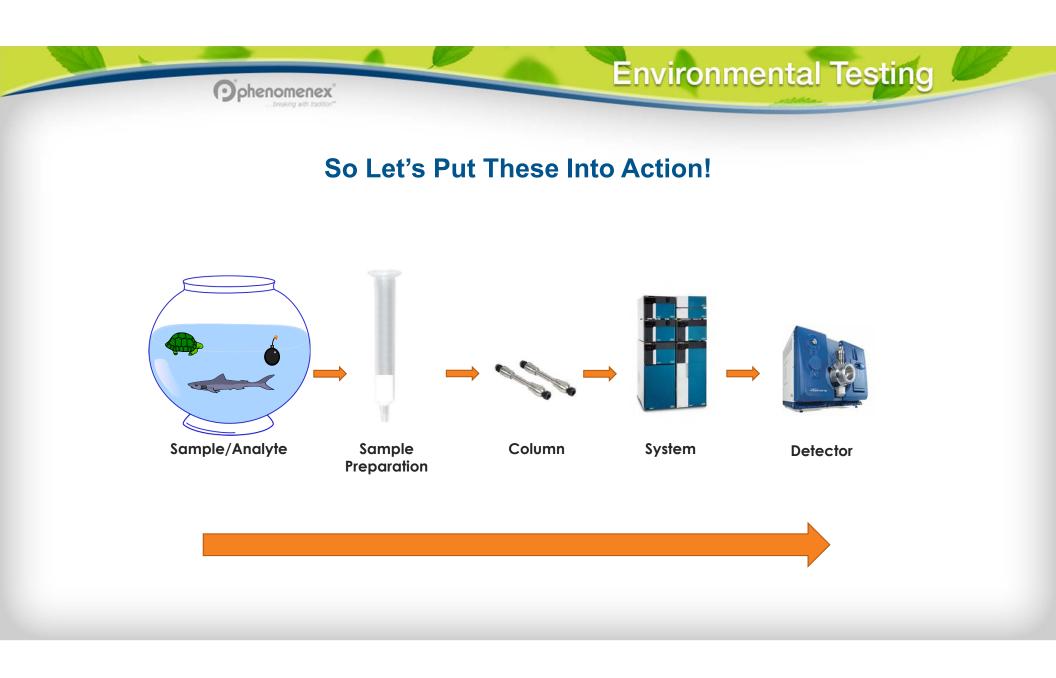

Ophenomenex"

 LUNA Omega 1.6 & 5 µm Silica Based


- 3-step bonding process:
- Deposition of **positive charge** on surface
- C18 bonding
- TMS endcapping
- A C18 with:
 - Enhanced selectivity for <u>polar</u>
 <u>acids</u>
 - Stability in 100% aqueous mobile phases
 - Improved peak shape and loadability for bases

Enhanced Selectivity for Acids

()phenomenex


Columns:	Luna Omega 1. ACE Excel 2 µn		
Dimension:	50 x 2.1 mm		
Mobile Phase:).1 % Formic Ac with 0.1 % Form	
Gradient:	Time (min) 0 5 5.1 7	% B 0 50 0 0	
Temperature: Detection:	0.5 mL/min 22 °C MS/MS (SCIEX 1. Succinic acid 2. MMA		
0 	0 III	10	o ∥

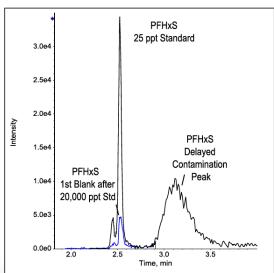
Succinic Acid

Comparative separations may not be representative of all applications.

OH

Reducing LC Contamination

- Reducing background LC contamination is critical to obtaining low detection limits
- Important to use high-purity solvents and modifiers (e.g. ammonium acetate) for mobile phases; test each solvent bottle to verify purity
- **PFAS** may be present in plastic tubing, Teflon[®] filters
 - Replace fluorinated tubing with PEEK
 - Remove PFTE solvent filter frits
 - Replace graphite-filled PTFE pump seals with polyethylene seals
- However, PFAS contamination may still be present ...



LC Contamination: Reduction Strategies

Ophenomenex

- Use of "delay" or "trap" column placed between the pumps and autosampler, upstream of the analytical column
- PFAS leaching from the LC will be retained on the delay column and separated from the analytical peak
- NOT helpful for contamination from method blanks, contaminated standards

Ophenomenex

SPE Method Overview

Advantage: Sample Cleanup and Concentration, compatible with DOD QSM 5.1

Overview:

Calibration and mass-labelled surrogate standards (i.e. isotope dilution stds) purchased from Wellington Laboratories (Guelph, ON); *wide coverage for surrogates*

Environmental Testing

Surrogate standards (25 ng) spiked into 250 mL water samples

PFAS compounds extracted and concentrated on weak anion-exchange SPE column (e.g. Phenomenex Strata[®] X-AW)

Stopcock	
Glass Chamber.	
Vacuum Gauge	
Valve Assembly	

Ophenomenex"

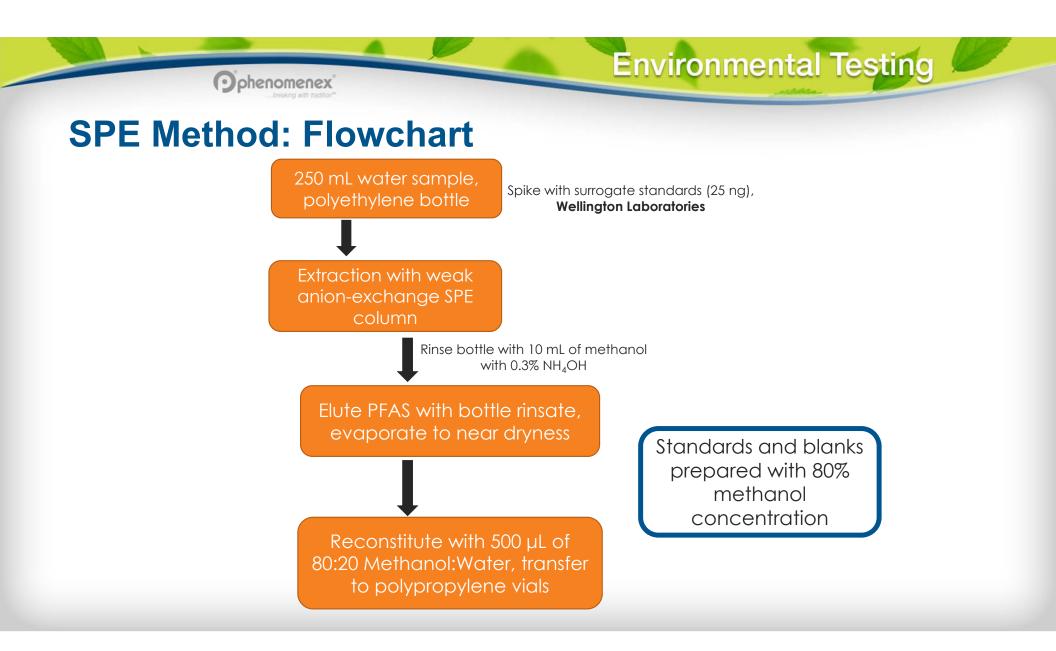
Environmental Testing

PRODUCT UPDATES FROM WELLINGTON LABORATORIES REPORTER

November 17, 2016

Catalogue Number	Product (methanol)	Qty	Conc
PFAC-24PAR	Native PFAS Precision and Recovery Standard Solution (24 components)	1.2 ml	2.0 µg/ml ea
MPFAC-24ES	Mass-Labelled PFAS Extraction Standard Solution (19 components)	1.2 ml	1.0 µg/ml ea

These new solution/mixtures complement our existing line of mixed PFAS reference standards.


Catalogue Number	Product (methanol)	Qty	Conc
PFC-MXA	Native PFCA Solution/Mixture (C ₄ -C ₁₄)	1.2 ml	2.0 µg/ml ea
PFS-MXA	Native PFSA Solution/Mixture (C ₄ ,C ₆ -C ₈ ,C ₁₀)	1.2 ml	2.0 µg/ml ea
PFAC-MXA	Native PFCA/PFSA Solution/Mixture (10)	1.2 ml	5.0 µg/ml ea
PFAC-MXB	Native PFCA/PFSA Solution/Mixture (17)	1.2 ml	2.0 µg/ml ea
PFAC-MXC	Native PFCA/PFSA Solution/Mixture (21)	1.2 ml	2.0 µg/ml ea
MPFAC-MXA	Mass-Labelled PFCA/PFSA Solution/Mixture (9)	1.2 ml	2.0 µg/ml ea
MPFAC-C-ES	Mass-Labelled PFCA/PFSA Extraction Standard (13)	1.2 ml	2.0 µg/ml ea
MPFAC-C-IS	Mass-Labelled PFCA/PFSA Injection Standard (4)	1.2 ml	2.0 µg/ml ea
EPA-537IS	U.S. EPA Method 537 Internal Standard PDS (3)	1.2 ml	variable
EPA-537SS	U.S. EPA Method 537 Surrogate PDS (3)	1.2 ml	variable

Please contact your local distributor or info@well-labs.com for pricing and delivery.

Visit our website (www.well-labs.com) for a complete listing of our new products.

WELLINGTON LABORATORIES

()phenomenex

Environmental Testing

LC Conditions For: SPE Method

Column: Gemini® 3µm C18 Dimensions: 50 x 2 mm Part No.: 00B-4439-B0 Mobile Phase: A: 20 mM Ammonium Acetate in Water B: Methanol Gradient: Time (min) % B 0.00 10 0.10 55 4.50 99 4.95 99 5.00 10 6.50 00 Injection: 10 µL Flow Rate: 0.6 mL/min Temperature: 40 °C Detection: SCIEX Triple Quad[™] 5500 with a Turbo V[™] source

Environmental Testing

Mass Spectrometer & Source Gas Conditions

- SCIEX Triple Quad[™]5500 system with Turbo V[™] source
- ESI probe in negative polarity mode

() phenomenex

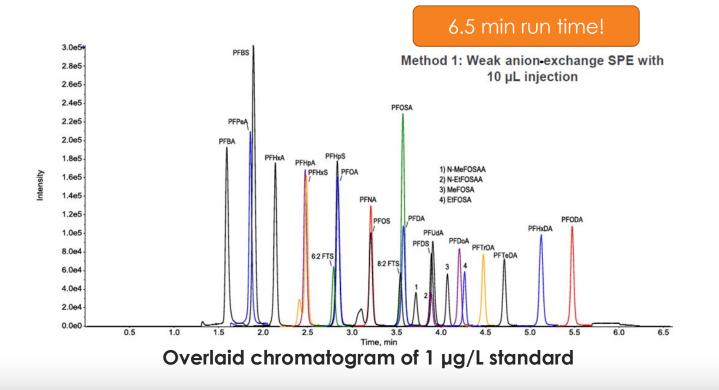
- Source parameters optimized using Compound Optimization (FIA) function in Analyst® software

Parameter	Value
Curtain Gas (CUR)	35 psi
IonSpray Voltage (IS)	-4500 V
Temperature (TEM)	600 °C
Nebulizer Gas (GS1)	50 psi
Heater Gas (GS2)	50 psi

Mass Spectrometer Parameters: Compound Specific

()phenomenex

Compound	Q1	Q3	DP	CE	Compound	Q1	Q3	DP	
PFCAs					PFSAs				
PFBA	212.9	169	-25	-12	PFBS	298.9	80	-55	
PFPeA	262.9	219	-20	-12	PFHxS	399	80	-60	
PFHxA	313	269	-25	-12	PFHpS	449	80	-65	
PFHpA	363	319	-25	-12	PFOS	499	80	-65	
PFOA	413	369	-25	-14	PFDS	599	80	-85	
PFNA	463	419	-25	-14	Other PFASs				
PFDA	513	469	-25	-16	6:2 FTS	427	407	-50	
PFUdA	563	519	-25	-18	8:2 FTS	527	507	-50	
PFDoA	613	569	-25	-18	PFOSA	498	78	-60	
PFTrDA	663	619	-25	-20	MeFOSA	512	169	-75	
PFTeDA	713	669	-25	-22	EtFOSA	526	169	-75	
PFHxDA	813	769	-25	-24	N-MeFOSAA	570	419	-40	
PFODA	913	869	-25	-26	N-EtFOSSA	584	419	-50	


Environmental Testing

- De-clustering Potential (DP) and Collision Energy (CE) optimized for each compound

- One MRM transition monitored each analyte and internal standard

- Scheduled MRMTM algorithm used to maximize dwell times and optimize cycle time

Chromatogram: 10 pg on-column injection

Environmental Testing

Method Performance: Calibration Range, Sensitivity and Accuracy

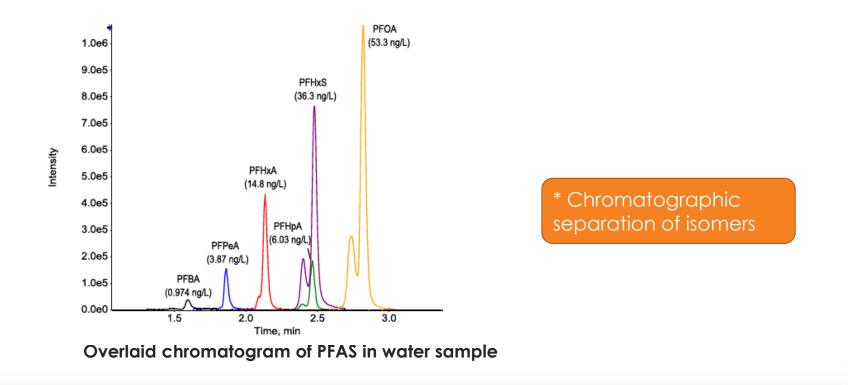
Compound	Calibration Range (ng/L)	Linear Correlation (r ²)	S:N of 25 ng/L standard	Accuracy of 25 ng/L standard
PFCAs				
PFBA	25-20,000	0.997	108	104%
PFPeA	25-20,000	0.998	88	103%
PFHxA	25-20,000	0.998	104	93%
PFHpA	25-20,000	0.999	116	101%
PFOA	25-20,000	0.999	117	106%
PFNA	25-20,000	0.990	91	109%
PFDA	25-20,000	0.998	103	105%
PFUdA	25-20,000	0.995	84	101%
PFDoA	25-20,000	0.998	60	101%
PFTrDA	25-20,000	0.998	32	104%
PFTeDA	25-20,000	0.994	15	107%
PFHxDA	25-20,000	0.999	21	103%
PFODA	25-20,000	0.999	33	102%

- 3 orders of linear dynamic range

- Excellent signal-to-noise and accuracy of lowest calibrator

()phenomenex

Method Performance: Calibration Range, Sensitivity and Accuracy


Compound	Calibration Range (ng/L)	Linear Correlation (r ²)	S:N of 25 ng/L standard	Accuracy of 25 ng/L standard
PFSAs				
PFBS	25-20,000	0.995	31	92%
PFHxS	25-20,000	0.999	604	103%
PFHpS	25-20,000	0.997	103	105%
PFOS	25-20,000	0.995	312	105%
PFDS	25-20,000	0.998	88	102%
Other PFASs				
6:2 FTS	25-20,000	0.991	100	98%
8:2 FTS	25-20,000	0.992	113	97%
PFOSA	25-20,000	0.997	118	104%
MeFOSA	25-20,000	0.996	96	103%
EtFOSA	25-20,000	0.994	90	101%
N-MeFOSAA	25-20,000	0.996	109	100%
N-EtFOSSA	25-20,000	0.994	61	103%

Environmental Testing

500x concentration factor: 25 ng/L injection std -> 0.05 ng/L in sample; method flexibility

SPE Method Application: Real-World Water Sample

SPE and LC/MS/MS - Method Summary

Ophenomenex

 Sample cleanup and concentration, compatible with DOD QSM 5.1

- Short 6.5 min LC method; separation of PFAS compounds and isomers with HLPC
 - Good peak shape for lower chain-length PFAS
- Use of delay column to separate contamination from LC
- Method performance:
 - 3 orders of linear dynamic range, +/- 10% accuracy and excellent S/N for lowest calibrator (25 ng/L), r² >0.990
- Applied to real-world water sample; PFAS detected at 0.97- 53.3 ng/L
- Can detect levels well below new EPA drinking water guidelines for PFOA and PFOS

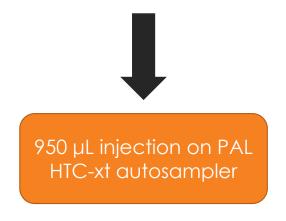
PFAS using HPLC and Direct Inject LC/MS/MS Case Study 2

Craig Butt, Ph.D. Product Application Specialist

Large Volume Injection Method Overview

- Advantage: Minimal sample preparation, reduced contamination potential
- Overview:

Ophenomenex"


- Water samples diluted with methanol + surrogate standards
- Direct injection of 950 µL onto analytical column
- Longer and larger diameter column used to improve retention; resulting in longer runtime (17.5 min)

Ophenomenex

Environmental Testing

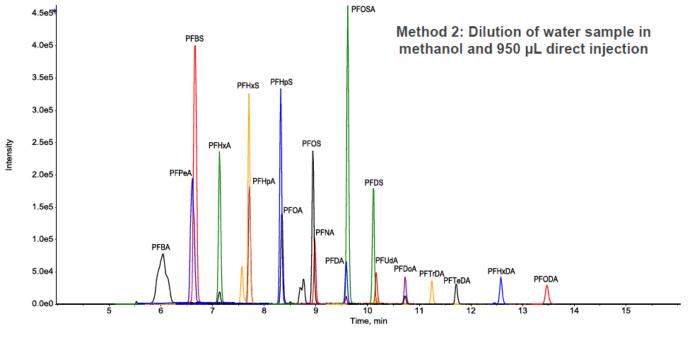
Large Volume Injection Method: Flowchart

1 mL water sample combined with 0.65 mL methanol + surrogate standards

Method Overview

Ophenomenex

- Method not optimized for PFHxDA (C16) and PFODA (C18)
- Presence of 5 g/L Trizma is not compatible with large volume injection method due to ionization suppression (but is compatible with SPE method)
- Mass Spectrometer:
 - SCIEX Triple Quad[™]5500 system with Turbo V[™] source; ESI negative mode
 - Identical source gas and compound-specific parameters as the SPE method


LC Conditions For: Large Volume Injection

Column: Gemini® 3 µm C18 Dimensions: 100 x 3.0 mm Part No.: 00D-4439-Y0 Mobile Phase: A: 20 mM Ammonium Acetate in Water B: Methanol Gradient: Time (min) % B 0 10 1.5 65 8 95 99 8.1 12 99 12.5 10 Injection: 950 µL Flow Rate: 0.6 mL/min Temperature: 40 °C Detection: SCIEX Triple Quad[™] 5500 with a Turbo V[™] source

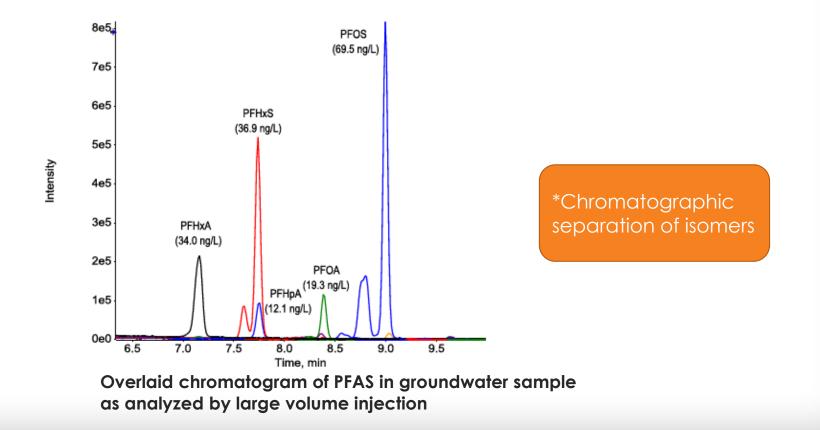
Chromatogram: Large Volume Injection Method

Ophenomenex

Environmental Testing

Overlaid chromatogram of 10 ng/L spike into groundwater

Environmental Testing

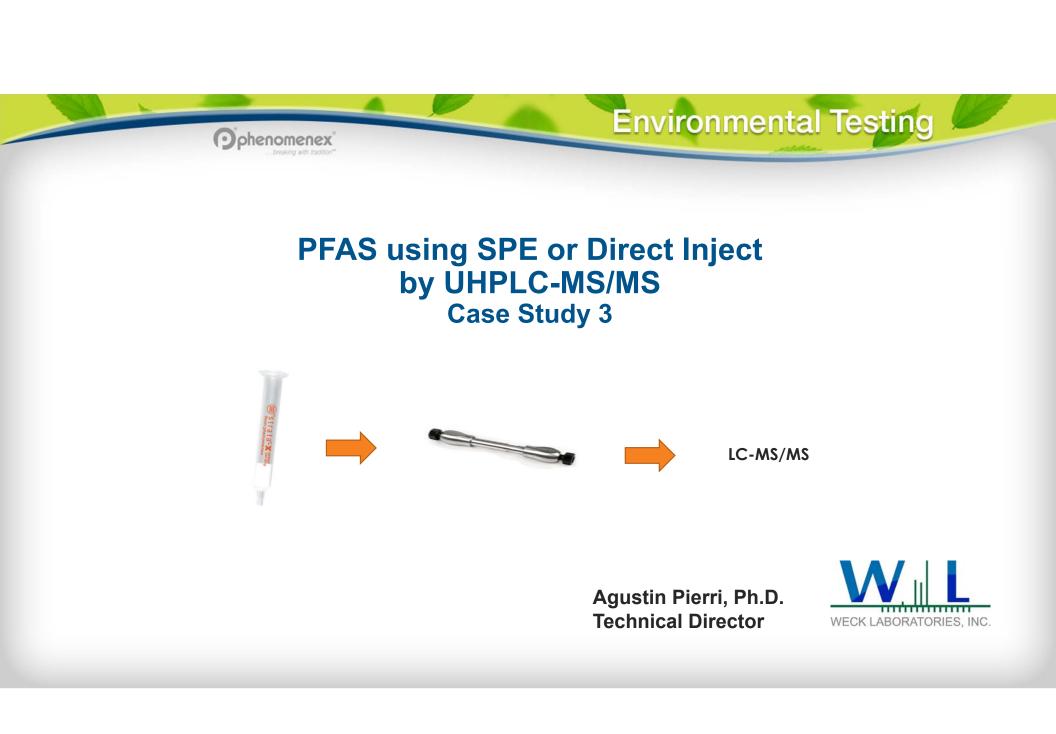

Ophenomenex

Method Performance: Calibration Range, Sensitivity and Accuracy

Compound	Calibration Range (ng/L)	Linear Correlation (r²)	S:N of 1 ng/L standard	Accuracy of 1 ng/L standard
PFCAs				
PFBA	1-200	0.997	328	97%
PFPeA	1-200	0.999	137	101%
PFHxA	1-200	0.999	284	101%
PFHpA	1-200	0.993	267	96%
PFOA	1-200	0.999	113	99%
PFNA	1-200	0.999	137	101%
PFDA	1-200	0.997	176	96%
PFUdA	1-200	0.998	168	99%
PFDoA	1-200	0.994	127	94%
PFTrDA	1-200	0.995	125	95%
PFTeDA	1-200	0.998	56	98%
PFSAs				
PFBS	2-200	0.994	1178	100%
PFHxS	1-200	0.998	229	96%
PFHpS	1-200	0.999	327	99%
PFOS	1-200	0.999	251	99%
PFDS	1-200	0.999	516	98%
PFOSA	1-100	0.997	1012	96%

Large Volume Injection Method Application

Ophenomenex


Large Volume Injection Method Summary

- Minimal sample preparation; dilute with methanol + surrogate standard and inject ("dilute & shoot")
- Method performance:

Ophenomenex

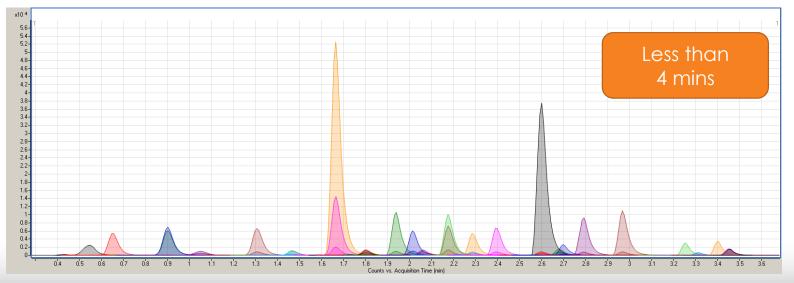
 2 orders of linear dynamic range, +/- 10% accuracy and excellent S/N for lowest calibrator (25 ng/L), r² >0.990

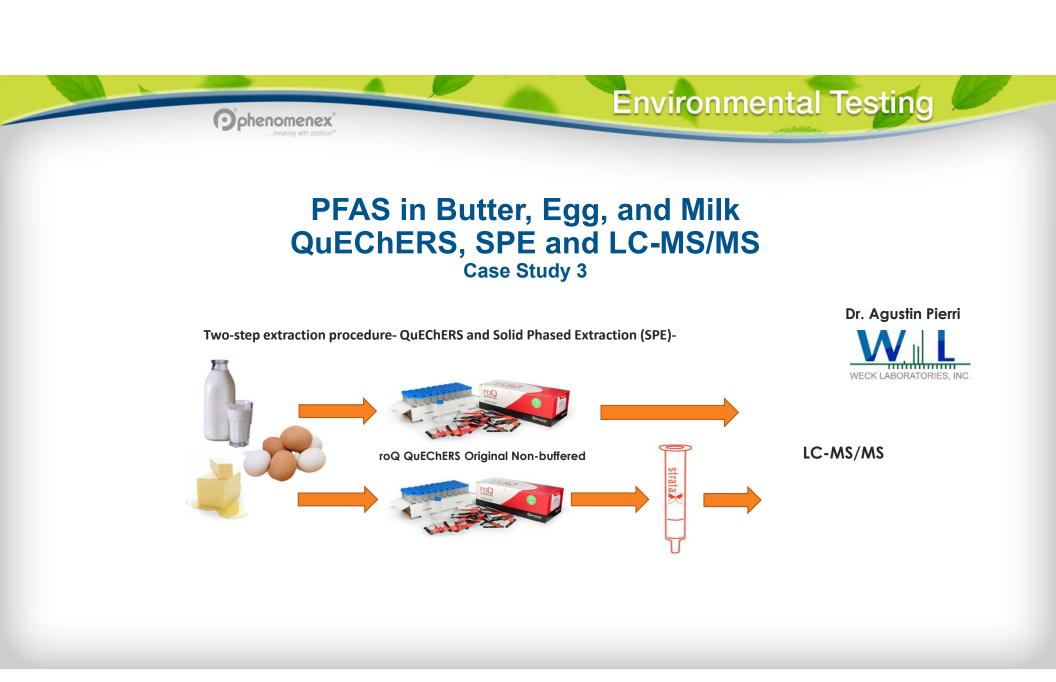
- Excellent method robustness; precision (% CV) was <5% for 9 replicates (20 ng/L) over 1 week analysis
- Applied to real-world groundwater sample; PFAS detected at 12.1-69.5 ng/L
- Can detect levels below EPA drinking water guidelines (70 ng/L for PFOS and PFOA)

Environmental Testing

UHPLC Conditions For: Large Volume Injection and SPE

Part No.:	Luna Omega 1.6 µm PS C18 50 x 2.1 mm 00B-4752-AN A: 5 mM Ammonium Acetate in Water		
	B: Acetonitri		
Gradient:	Time (min)	B (%)	
	0.0	40	
	0.5	40	
	3.0	90	
	3.1	100	
	4.0	100	
Injection:	1 µL		
Flow Rate:	0.55 mL/min	1	
Temperature:	40 °C		




Direct Injection Chromatogram

23 PFAS Analytes

()phenomenex

6:2 FTS	EtFOSE	PFDS	PFNA	PFTeDA
8:2 FTS	MeFOSE	PFHpA	PFOA	PFTrDA
	PFBA	PFHpS	PFOS	PFUdA
EtFOSA	PFBS	PFHxA	PFPeA	
MeFOSA	PFDA	PFHxS	PFDoA	

QuEChERS Protocol

- Add 1.0 gram homogenized sample to 50 mL tube
- Add 10 mL H2O and 10 mL MeCN
- Add 4 g MgSO4 and 1 g NaCl
- · Vortex 3 minutes, centrifuge 5 minutes
- Transfer 1 mL aliquot to tube with 150 mg MgSO4 and 50 mg PSA
- Transfer Aliquot for LC-MS/MS analysis
- Analysis was done using on Luna Omega PS C18 50 x 2.1mm

LC-MS/MS

Environmental Testing

roQ QuEChERS Original Non-buffered

QuEChERS and SPE Protocol

QuEChERS

- Add 1.0 grams homogenized sample to 50 mL tube
- Add 10 mL H2O and 10 mL MeCN
- Add 4 g MgSO4 and 1 g NaCl
- Vortex 3 minutes, centrifuge 5 minutes
- Transfer 1 mL aliquot to tube with 150 mg MgSO4 and 50 mg PSA
- Transfer 500 $\mu L,$ dilute to ~15 mL with H2O for SPE

SPE

Condition Strata-XAW 200 mg/3 mL SPE cartridge with 0.3% NH4OH/MeCN

strata

- · Load diluted QuEChERS extract, wash with 5 mL H2O
- Elute with 4mL 0.3% NH4OH/MeCN
- Transfer 200 µL to conical vial for analysis
- Evaporate to 500 µL, transfer to conical vial for analysis
- Analysis was done using Luna Omega PS C18 50 x 2.1mm

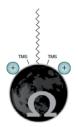
roQ QuEChERS Original Non-buffered

Extracts



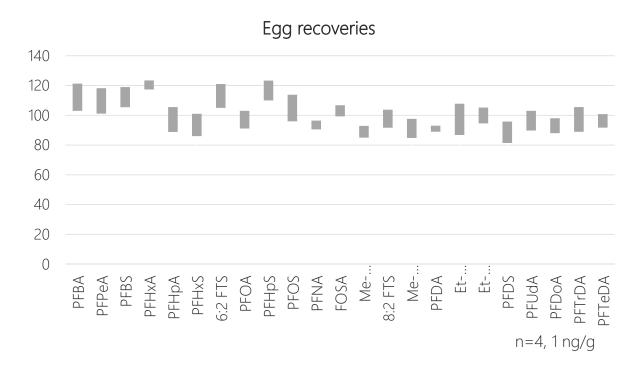
Phenomenex"

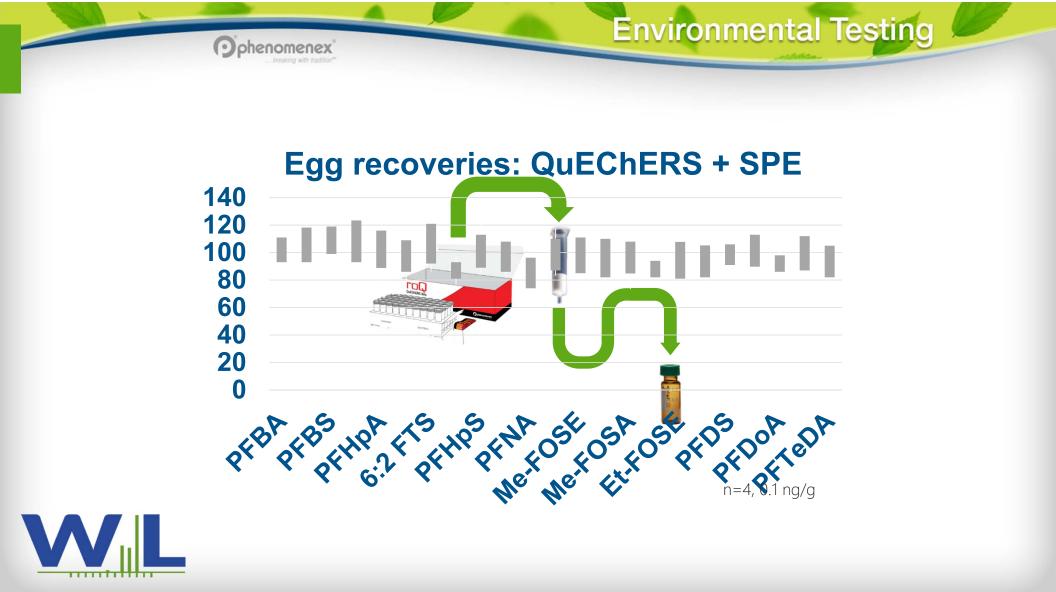
PFAS in Butter using SPE and LC-MS/MS


ປີວ ປິ4 ປີ5 ປິ6 ປີ7 ປິ9 ປີ9 ¹ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 1.9 2. 21 22 2.3 2.4 2.5 2.6 2.7 2.9 2.9 3. Counts vs.Acquisition Time (prin) 31 32 33 34 35

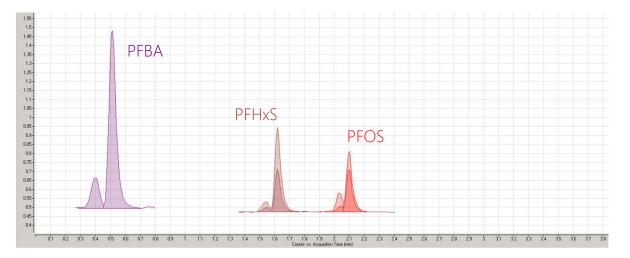
We would like to provide special thanks to Agustin Pierre from Weck Laboratories for contributing this application.

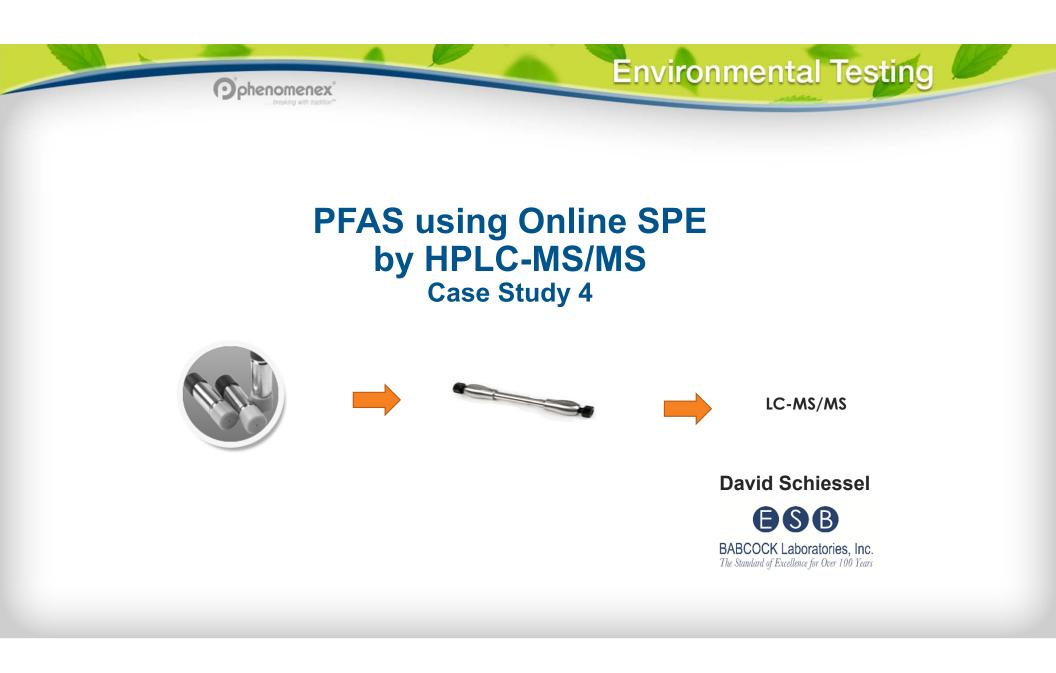
Column:	Luna Omega	1.6 µm PS C18
Dimensions:	100 x 2.1 mm	1
Part No.:	00D-4752-A	N
Mobile Phase:	A: 5 mM Am	monium Acetate in Water
	B: Acetonitril	e
Gradient:	Time (min)	B (%)
	0.0	40
	0.5	40
	3.0	90
	3.1	100
	4.0	100
Injection:	2.µL	
Flow Rate:	0.55 mL/min	
Temperature:	40 °C	
Detection:	MS/MS	


An	alytes				
1.	6:2 FTS	11.	PFDoA	21.	PFTeDA
2.	8:2 FTS	12.	PFDS	22.	PFTrDA
3.	EtFOSA	13.	PFHpA	23.	PFUdA
4.	EtFOSE	14.	PFHpS		
5.	FOSA	15.	PFHxA		
6.	MeFOSA	16.	PFHxS		
7.	MeFOSE	17.	PFNA		
8.	PFBA	18.	PFOA		
9.	PFBS	19.	PFOS		
10.	PFDA	20.	PFPeA		

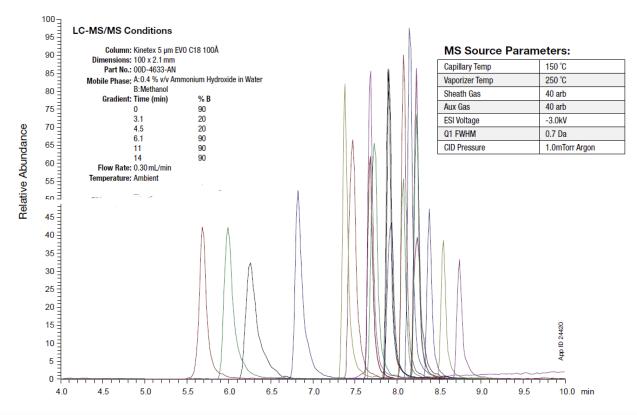

LUNA OMEGA PS C18

QuEChERS Recoveries, Egg





Branched vs. linear



⊿

Evaluation of Online SPE Sorbents for PFAS

Environmental Testing

15

Environmental Testing

Sample Prep Procedure

1. Samples are collected in polypropylene bottles and preserved with 0.5 g/L Trizma®.

preserved with 0.5 g/L Thzma®

2. A 10 mL aliquot is spiked with surrogates at a concentration of 50 ng/L.

3. If necessary, filter using a 10 mL syringe fitted to a 1.2 μm glass fiber syringe filter.

4. The filtered sample is spiked with internal standard at 50 ng/L.

5. The filtered sample is loaded and analyzed using a 5.0 mL injection volume.

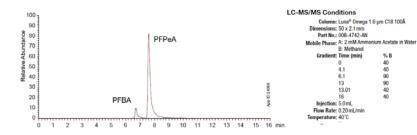
6. The online SPE is completely automated; it includes a sample wash step (2.1 to 4.1 min) to wash Trizma preservative from the media.

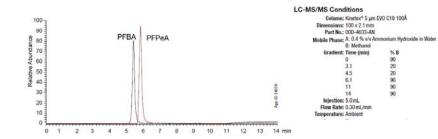
LC Gradient (pump 1)

Time (min)	Water (%)	МеОН (%)	0.4% NH3 (%)	
0.00	0	90	10	
3.10	20	20	60	
4.50	20	20	60	/
6.10	0	90	10	
11.00	0	90	10	
14.00	0	90	10	

Note: to decrease PFOA contributed by the eluent system, MeOH is kept at 90 % while loading the online SPE with sample and subsequently brought down to 20 % 1 min prior to online SPE elution.

Online SPE Program (pump 2)

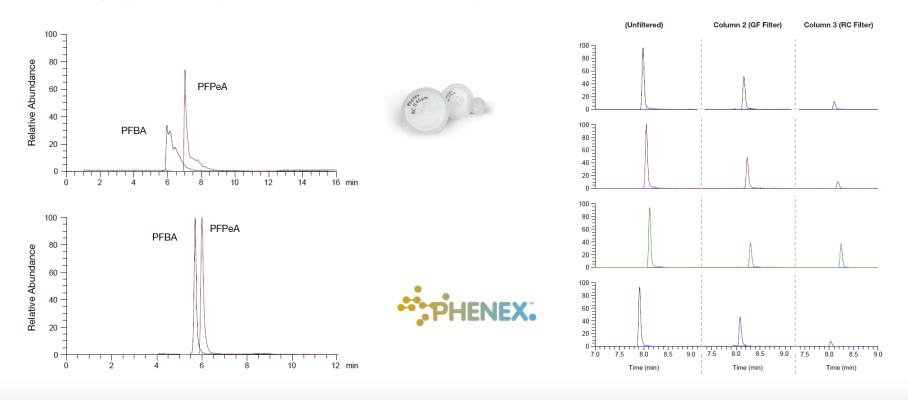

	Time (min)	Water (%)	МеОН (%)	AcN (%)	Flow (mL/mi n)	Step
	0.00	100	0	0	2.5	Load
	2.00	100	0	0	2.5	Load
	2.10	100	0	0	2.5	Wash
	4.10	100	0	0	2.5	Wash
ѫ	4.11	30	70	0	0	Idle
	9.00	30	70	0	0	Idle
	9.01	0	0	100	2.0	Wash
	9.49	0	0	100	2.0	Wash
	9.50	2.0	98	0	3.0	Wash
	11.50	20	98	0	3.0	Wash
	11.51	100	0	0	3.0	Equil
	14.00	100	0	0	3.0	Equil

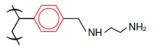

Ophenomenex

Evaluation of Online SPE Sorbents for PFAS

Online SPE using C18-E sorbent and 2.0 mM ammonium acetate mobile phase modifier on a Luna Omega C18 50 mm column.

Online SPE using Strata-X-AW sorbent and 0.4-0.8% ammonia mobile phase modifier on a Kinetex C18 EVO column (final conditions).

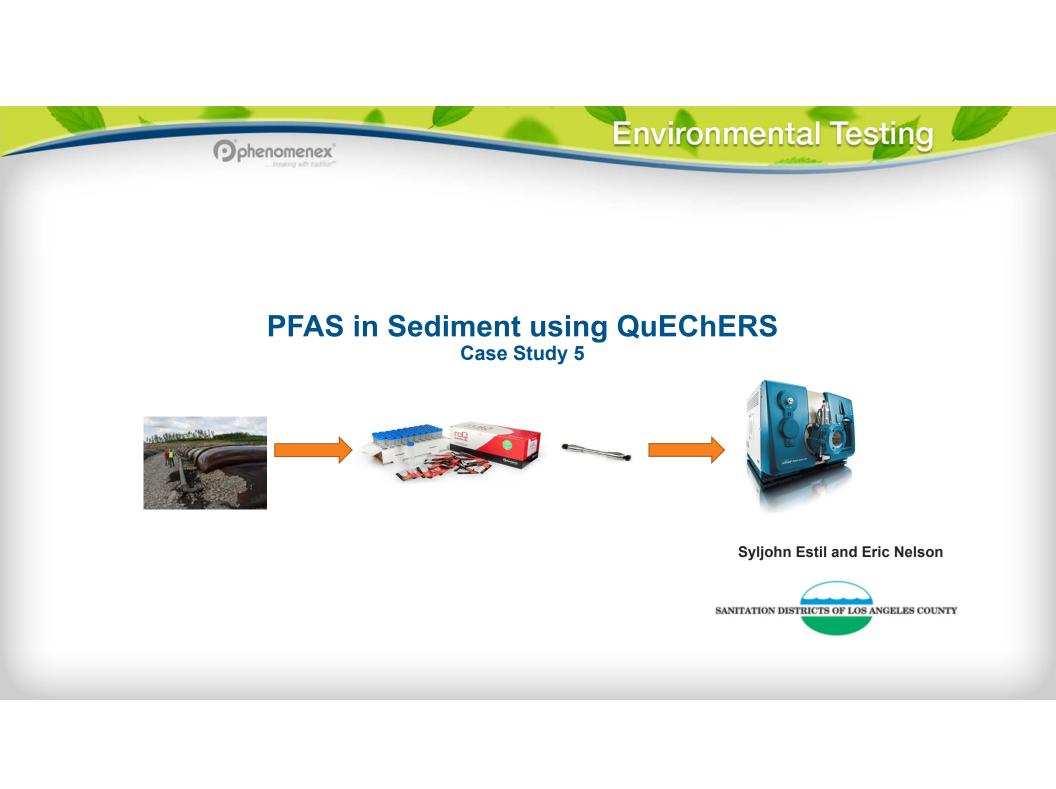



Elution strength of 0.04% NH_3 (top) and 0.24% NH_3 (bottom) illustrating more efficient elution of analytes (PFBA and PFPeA) with increased base concentration in the mobile phase.

Effect of filtering on recovery of long chain PFCs.

Evaluation of Online SPE Sorbents for PFAS

Options	Column	Strata SPE Sorbent	Sample pH	SPE Conditioning pH	Eluent*	PFBA / PFPeA %	Shape
1	Kinetex EVO C18 5 µm 100 x 2.1mm	X-AW	Trizma (pH=7)	neutral	0.24-0.04 % NH ₃	100	excellent
2	Kinetex EVO C18 5 µm 50 x 2.1mm	X-AW	neutral	neutral	0.04 % NH ₃	106	very poor
3	Kinetex EVO C18 5 µm 50 x 2.1mm	X-AW	neutral	neutral	0.24-0.04 % NH ₃	76	ОК
4	Kinetex EVO C18 5 µm 50 x 2.1mm	X-AW	acidic	neutral	0.02 % Formic Acid	13	ОК
5	Luna Omega C18 1.6 µm 50 x 2.1mm	C18	neutral	neutral	2 mM NH ₄ 0Ac	<1	_
6	Luna Omega C18 1.6 µm 50 x 2.1mm	C18	acidic (pH=2)	acidic (pH=2)	0.02 % Formic Acid	22	very poor
7	Luna Omega C18 1.6 µm 50 x 2.1mm	C18	acidic (pH=2)	acidic (pH=2)	2 mM NH ₄ 0Ac	11	ОК
8	Luna Omega C18 1.6 µm 50 x 2.1mm	C18	neutral	acidic (pH=2)	2 mM NH ₄ 0Ac	11	ОК
9	Luna Omega C18 1.6 µm 50 x 2.1mm	x	neutral	neutral	2 mM NH₄0Ac	5.9	poor
10	Luna Omega C18 1.6 µm 50 x 2.1mm	X	acidic	neutral	2 mM NH ₄ 0Ac	5.1	poor



Environmental Testing

* Note: All eluents used a gradient of increasing methanol for elution.

Ophenomenex

PFAS in Sediment using QuEChERS

Phenomenex Knudkatcher[™] Ultra Inline Filter: Delay Column: Luna® 5 µm C18 (2) 30 x 2.0 mm 00A-4252-B0 Part No.: Mobile Phase: A: 20 mM Ammonium acetate in water B: Methanol Time (min) % B Sample Preparation Gradient: 0.0 10 1.5 65 **QuEChERS Extraction Protocol** 8.0 95 Extracted ion chromatogram of sediments spiked with 1.0 ng/g of the target analytes 8.1 99 12.0 99 Step 1 Step 2 12 12.5 10 Injection: 90 µl 1.20e6 Flow Rate: 0.6 mL/min Extraction Clean-up 3 1.15e6 40°C emperature: 1.10e6 SCIEX 5500 QTRAP® Detector: Detection: MS/MS ESI Negative (sMRM) 1.05e6 5 Analytes: 1. PFBA 10. PEOS 1. Weigh 2.0 g of dried sediment into a 1. Transfer 8-9mL of the acetonitrile 1.00e6 2. PFPeA 11. PFNA polypropylene container and spike with supernatant into a roQ 9.50e5 12. PEOSA 3. PFBS isotopically-labeled internal standards 9.00e5 QUECHERS PSA/C18 dSPE 4. PFHxA 13. PFNS 8.50e5 clean-up tube (Part no. KS0-8926) 14, PFDA 2. Add 10mL deionized water and vortex. 5. PFPS 15 8.00e5 15, PFDS and vortex for one minute 6. PFHxS Add 10mL acidified acetonitrile (1% 16. PFUdA 8 7.50e5 7. PFHpA acetic acid) to the slurry and vortex g.7.00e5 17, PFDoA 8. PFHpS 2. Centrifuge the dSPE tubes for 10 18. PFTrDA 6.50e5 13 9. PFOA 3. Add the extraction salts (1.5 g Sodium minutes at 3000 rpm 19. PFTeDA Acetate and 2 g MgSO,) to the sample 5.50e5 5.00e5 and vortex for 1 minute 10,11 3. Place an aliquot of the extract in 18 17 a HPLC vial and dilute 1:1 with 4.50e5 4. Centrifuge the samples for 5 minutes deionized water. The sample is now 4.00e5 19 16 at 4000 rpm ready for analysis 14 3.50e5 4 3.00e5 5. Place the samples in a rack and 9 2 2.50e5 freeze at -20° for 30-60 minutes. 2.00e5 ID 24517 This freezing step allows for easier 1.50e5 extraction of the supernatant 6 1.00e5 0 5.00e4 0.00

6.0 6.5 7.0

7.5

HPLC-MS/MS Conditions Dimensions:

Column:

Part No.:

Gemini[®] 3 µm C18

100 x 3mm 00D-4439-Y0

Environmental Testing

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 min

Ophenomenex

Conclusion

Solid Phase Extraction or Large-Volume Injection are both suitable sample preparation techniques

Delay column to distinguish system related PFAS interferences

HPLC and UHPLC column chemistries suitable for the chromatographic range of polar acids through non-polar acids, esters, amides, and sulfonamides with selectivity of branched vs. linear isomers

Environmental Testing

SCIEXTriple Quad[™] 5500 with Turbo V[™] source

Detection limits at low ppt levels with the ability to detect below drinking water guidelines

Ophenomenex[®]

Environmental Support and Resources

<page-header><page-header><page-header><section-header><section-header><section-header><section-header>

Environmental Testing

SPE Method Development Tool 1,000s of Applications

On-Site Lab Demos

Environmental Edge Newsletter

Technical Notes

Digital Learning Tutorials

www.phenomenex.com/Environmental

Thank You Acknowledgements

We would like to provide special thanks to Dr. Craig Butt and Dr. Simon Roberts at SCIEX, Dr. Agustin Pierri from Weck Laboratories, Syljohn Estil at Sanitation Districts of LA, and David Schiessel at BABCOCK Laboratories, for their contributions.

Environmental Testing

Trademarks and Disclaimers
Luna, Gemini, and Strata are trademarks of Phenomene x.
Turbo V and Triple Quad are trademarks of AB SCIEX Pte. Ltd. AB SCIEX™ is being used under license.

2018 Phenomenex, Inc. All rights reserved.