

Seyed Sadjadi, Shahana Huq, Sean Orlowicz and Laura Snow Phenomenex, Inc., 411 Madrid Ave., Torrance, CA 90501 USA

Comparison of Different Whole Blood Sample Pretreatment Methods for Targeted Analysis of Basic Drugs

Drug analysis from whole blood is a challenge due to the complex matrix and the presence of erythrocytes, the concentration of which can vary from sample to sample. Any drug analysis in whole blood generally requires some form of a pretreatment procedure that simplifies the blood matrix before the actual analyte extraction. However, many procedures can efficiently be applied to hemolyze the erythrocytes. Likewise, there are equally many capable methods to precipitate the plasma proteins. Ultimately, a successful pretreatment method should produce a high degree of recovery for all analytes in the sample.

Here, we evaluated several common pretreatment procedures^{1,2}, that both lyse the cells and precipitate the plasma proteins. These include acidic reagents (10 % TCA and 6 % HClO₄), organic solvent mixtures (MeOH and ACN) and a combination of zinc sulfate and an organic solvent (**Table** 2). Subsequently, the clarified supernatant was processed through a polymeric cation exchange SPE (Strata[™]-X-C) to extract the basic drugs. The list of the class of compounds that were targeted for this work includes amphetamines (amphetamine, methamphetamine, MDA, MDEA, etc), natural and synthetic opiates (morphine, codeine, hydromorphone, hydrocodone, etc) illicit drugs (PCP, benzoylecgonine), benzodiazepines (alprazolam, lorazepam, etc) and analgesics (tramadol).

After the initial evaluation, we constructed a calibration curve using whole blood as a matrix. Replicate analysis of 20 and 200 ng/mL spiked whole blood samples were used for the precision and accuracy study.

Table 1. List of Pain Panel Drugs

Class	Analyte	Class	Analyte		
	Alprazolam		Methadone		
	Clonazepam		EDDP		
	Diazepam		Fentanyl		
	Flunitrazepam		Norfentanyl		
	Lorazepam Synthetic Midazolam Opioids Nordiazepam Oxazepam		Meperidine		
Benzodiazepines			Normeperidine		
			Naloxone		
			Norpropoxyphene		
	Temazepam		Propoxyphene		
	α -Hydroxyalprazolam		Sufentanil		
	Alprazolam		Naltrexone		
	Codeine		Amphetamine		
	Hydrocodone		Methamphetamine		
Opiates	Hydromorphone	Amphetamines	MDMA		
	Morphine		MDA		
	6-Acetylmorphine (6-MAM)		MDEA		
	Oxymorphone		Tramadol		
Illicit Drugs	Phencyclidine	Analgesics	Carisoprodol		
	,	-	Buprenorphine		
	Benzoylecgonine		Norbuprenorphine		

Table 2. Evaluated Pretreatment Methods

	10 % TCA		
Acidic Reagents	6 % HClO ₄		
	90:10 ACN:MeOH		
	50:50 ACN:MeOH		
Organic Solvents	10:90 ACN:MeOH		
	100 % MeOH		
	100 % ACN		
	100 % ACN		
Organic Solvent + ZnSO ₄	90:10 ACN:MeOH		
	100 % MeOH		

Final Sample Preparation Method

Pretreatment:

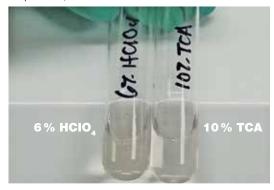
- Add 0.5 mL whole blood (with EDTA preservative) into a glass tube
- Add 100 µL 5 % (w/v) ZnSO₄ and vortex 3-5 sec
 Add 1.5 mL of chilled (~0 °C) 90:10 ACN:MeOH while vortexing
- Add 1.5 mL of chilled (~0°C) 90:10 ACN:MeOH while vortexing
 Centrifuge samples at 6000 rpm for 10 min and transfer supernatant
- To supernatant, add 4 mL of aqueous 0.1 % formic acid to acidify and dilute the mixture

SPE Cartridge:

• Strata-X-C, 30 mg/3 mL (Part no. 8B-S029-TBJ) equipped with an adapter cap

(Part no. AH0-7191) and a $12\,mL$ reservoir (Part no. AH0-7003)

Condition: 1 mL Methanol

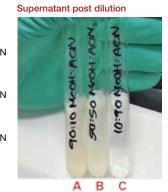

- Equilibrate: 1 mL Water
 - Wash 1: 1 mL 0.1 % Formic acid in water
 - Wash 2: 1 mL 30 % Methanol in water
 - Dry: 3 to 4 mins at high vacuum (~10" of Hg)
 - Elute: 2x 500 µL (2 aliquots of 500 µL) Ethyl acetate: Isopropanol: Ammonium hydroxide (70:20:10)
- Dry down: Evaporate to dryness under nitrogen at 40-45 °C
- Reconstitute: With 500 µL of 85:15 (A:B) of LC mobile phase

Final LC/MS Method

	74 011 70 1 0111	
Flow Rate:	0.7 mL/min	
Gradient:	Time (min)	
	0.00	10
	2.50	100
	3.50	100
	3.50	10
	5.00	10
Temperature:	Ambient	
Detection:	MS/MS 4000	QTRAP [®] (AB SCIEX), ESI+
System:	,	exera [®] UFLC with LC-30AD pumps
Injection:	10 µL	chera of Eo with Eo Sond pumps
injection:	ioμc	

Figure 1. Acidic supernatant

Addition of Acidic Reagent • Both 10% trichloroacetic acid and 6% perchloric acid produced very clear, colorless supernatants, even after dilution.


Figure 2. Supernatant from organic solvents

Addition of Organic Solvents • MeOH and/or mostly methanol solvent produced a supernatant with a slight hazy yellow tint • Acetonitrile and/or mostly acetonitrile solvent produced a more clear and colorless supernatant. However, the supernatant turned cloudy when diluted.

Supernatant

(A) 90:10 MeOH:ACN **(B)** 50:50 MeOH:ACN (C) 10:90 MeOH:ACN

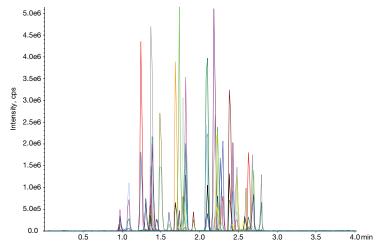
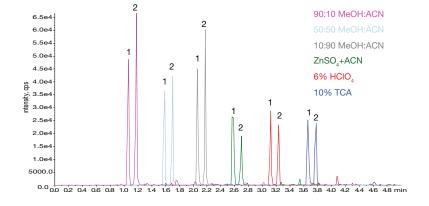
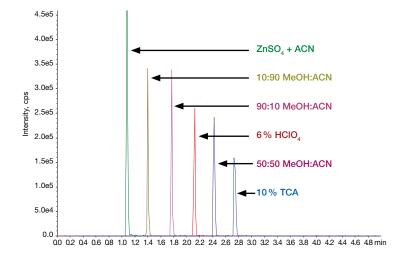


Figure 3. Supernatant from $ZnSO_4$ and ACN post dilution

- Addition of ZnSO₄ and an Organic Solvent When added to whole blood, zinc sulfate produced a bright red cloudy solution. Upon addition of the organic solvent, a brown precipitate appeared which lead to a clear and colorless Upon dilution, the solution showed slight turbidity (ZnSO₄ and ACN supernatant are shown below).

Figure 4. Representative chromatogram of the basic compounds


Figure 5. Comparison of the effects of various pretreatment options on amphetamine. Chromatograms are overlaid with time shift to provide clarity.


Table 3. Method Precision and Accuracy Data Based on Replicate Quality Control Samples

		i ana / toodia	cy Data Dao		ato duanty o	ona or oamp	
Analyte	Class	Expected Conc, ng/mL (Low)	%RSD (Low)	% Accuracy (Low)	Expected Conc, ng/mL (High)	%RSD (High)	% Accuracy (High)
Alprazolam	-	20	10	108	200	12	104
Clonazepam		20	9	114	200	11	107
Diazepam		20	10	97	200	12	103
Flunitrazepam		20	7	112	200	7	105
Lorazepam	Benzodiazepines	20	15	108	200	10	111
Midazolam		20	7	115	200	4	88
Nordiazepam		20	11	101	200	13	103
Oxazepam		20	6	108	200	12	105
Temazepam		20	7	105	200	9	99
α-Hydroxyalprazolam	-	20	6	88	200	11	91
Codeine		20	10	92	200	9	87
Oxycodone		20	4	95	200	2	93
Hydromorphone	Opiates	20	6	85	200	14	97
Hydrocodone		20	7	105	200	9	99
Morphine		20	8	91	200	10	86
Methadone		20	10	110	200	5	105
EDDP		20	10	98	200	2	94
6-MAM		20	7	100	200	7	100
Fentanyl		20	9	115	200	5	90
Norfentanyl		20	12	95	200	4	100
Meperidine	Synthetic Opioids	20	7	105	200	7	103
Normeperidine		20	9	103	200	10	102
Naloxone		20	7	118	200	3	111
Norpropoxyphene		20	9	100	200	14	90
Propoxyphene		20	12	111	200	5	101
Sufentanil		20	8	98	200	7	89
Naltrexone	-	20	4	113	200	11	108
Amphetamine		20	9	107	200	11	107
Methamphetamine		20	10	115	200	3	96
MDMA	Amphetamines	20	13	111	200	8	92
MDA	-	20	8	102	200	7	101
MDEA		20	16	107	200	3	105
Tramadol		20	4	105	200	3	96
Carisoprodol	Analgesics	20	8	106	200	9	100
Buprenorphine		20	12	104	200	11	101
Norbuprenorphine		20	6	105	200	13	106
Phencyclidine	Illinit During	20	7	110	200	4	92
Benzoylecgonine	Illicit Drugs	20	10	104	200	5	101

Figure 6. Comparison of the effects of various pretreatment options on Codeine (peak 1) and Hydrocodone (peak 2). Chromatograms are overlaid with time shift to provide clarity.

Figure 7. Comparison of the effects of various pretreatment options on Benzoylecgonine. Chromatograms are overlaid with time shift to provide clarity.

Discussion

It appeared that not all pretreatment procedures produced the best results. In general, the acidic pretreatment methods produced the poorest overall responses despite a very clear pretreated sample. (**Figure 1** and **Figure 5**, with some exceptions). This might be due to the hydrophobic nature of many of the compounds used here that are soluble (or stable) in the pretreated acidic solutions (**Figure 6 and 7**).

Use of MeOH alone was not adequate to achieve a clear

enough supernatant from whole blood. Acetonitrile with a small amount of MeOH produced better than expected recoveries for some classes of compounds such as opiates (**Figures 2** and **6**).

The pretreatment procedure with $ZnSO_4$ and an organic solvent (acetonitrile or 90:10 ACN:MeOH) produced the most consistent results for many compounds (**Table 3**).

Discussion

We have developed an effective pretreatment and SPE clean-up method for whole blood followed by targeted LC/ MS/MS analysis. Zinc sulfate with an acetonitrile and methanol combination provided the best response for the majority of analytes tested. Further sample cleanup was successfully accomplished by using a cationic exchange SPE, Strata-X- C, sorbent. This combination can greatly improve the column longevity and maintain a clean LC/MS/MS system. The combination of the pretreatment and SPE method can sufficiently be employed for a wide range of basic compounds generally encountered in existing pain panel methods. The authors are grateful for Mrs. Amanda Kaspick's gracious contributions and efforts to this project.

References

- Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R.; Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry; Chromatogr B Analyt Technol Biomed Life Sci. 2003 Mar 5;785(2):263-75
- 2. Wang, P (Ed); High throughput analysis in pharmaceutical industry, 2008, CRC Press
- S Huq, S Sadjadi, and S Countryman, "Quantitative Bio Analysis of the Most Commonly Used Pain Medications in Urine Using a Reliable Sample Preparation Technique in Combination With an API 5000 LC-MS-MS", Mass Spec Application for Clinical Laboratory Conference, 2013
- 4. Dalsgaard et al, Quantitative Analysis of 30 Drugs in Whole Blood by SPE and UHPLC-TOF-MS. (2013) J of Forensic Science and Criminology 1(1):101.

Trademarks

Kinetex is a registered trademark and Strata-X is a trademark of Phenomenex. Shimadzu and Nexera are registered trademarks of Shimadzu Corporation. QTRAP is a registered trademark of AB SCIEX Pte. Ltd. AB SCIEX is being used under license. Strata-X is patented by Phenomenex. U.S. Patent No. 7,119,145 © 2015 Phenomenex, Inc. All rights reserved.