

β-Glucuronidase Removal

Supported Liquid Extraction

Solid Phase Extraction

Filtration

QuEChERS

Phospholipid Removal + Protein Precipitation

Protein Precipitation

www.phenomenex.com/SamplePrep

SAMPLE PREPARATION MADE SIMPLE Selection and Users Guide

ophenomenex.

Choose Your Sample Preparation Solution

Sample preparation is crucial in achieving desired LC or GC analytical results. Sample matrix effects can result in an array of interferences which can lead to poor chromatography as well as instrumentation drawbacks, hindering your approach and goal for the analysis.

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

A mechanical or physical operation which is used for the separation of solids from fluids by interposing a medium through which only the fluid can pass.	pp. 4-11
Proteinaceous samples require a protein precipitation step to promote protein aggregation which allows their removal from the solution/sample.	pp. 12-15
A β -Glucuronidase enzyme removal method to clean-up hydrolyzed urine from samples in less than 1 minute, ideal for rapid drug testing.	pp. 16-19
Biological samples require the removal of endogenous phospholipids and pro- teins as they are a primary source of ion suppression and resulting matrix effects.	pp. 20-25
A streamlined approach that makes it easier and less expensive for analytical chemists to examine residues in food. The name is a portmanteau word formed from "Quick, Easy, Cheap, Effective, Rugged, and Safe".	pp. 26-31
Supported Liquid Extraction (SLE) is a FASTER, EASIER, and MORE RELI- ABLE way to perform liquid-liquid extraction. Unwanted interferences can be removed such as proteins, salts and phospholipids.	pp. 32-38
A separation process that is used to remove compounds from a mixture, based on their physical and chemical properties. Analytical laboratories use solid phase extraction to concentrate and purify samples for analysis from a wide variety of matrices.	pp. 39-66
Paramagnetic beads used to capture streptavidin or other target analytes in order to perform a clean-up of biologics.	pp. 67-69

Syringe Filters for LC/GC

Filtering your sample eliminates contaminants prior to injection onto your column or system

Filtration can:

- · Clean samples for more consistent, reproducible results
- Extend column lifetime
- Reduce back pressure (caused by contaminant and particulate buildup at the head of the column)
- Save your system's rotor seals, valve stators, and several other moving components from unnecessary wear and damage that can result from undissolved sample particulates grinding away at the system components

www.phenomenex.com/Phenex

Simplify your Syringe Filters!

Two-Step Vials for Filtration and Analysis

Verex Filter Vials combines syringe filter and vial technology, eliminating the need for separate syringes, syringe filters, vials, and cap/septa, allowing you to reduce lab waste and simplify your workflow.

www.phenomenex.com/VerexFV

How to Use Syringe Filters

Phenex Instructions

2

Twist the luer lock end of the filter securely onto the syringe. (Caution: Do not use syringes without a matching luer lock, otherwise the pressure applied may cause the filter to come off unexpectedly.)

Refer to page 9 to select the correct syringe filter.

Filtration

3 Apply gentle pressure to the syringe plunger. (Caution: Small syringes can generate excessive pressures.) Push the liquid sample, as well as the remaining air, through the syringe filter to maximize sample recovery.

Which Filter Membrane Is Right for Me?

Phenex syringe filters are offered in a variety of chemically compatible membranes that are ideal for any application. Proper membrane and size selection are the keys to choosing the best product to maintain the integrity of your sample components as well as to protect your system from particulate contamination.

Select your filter in three EASY steps:

1. What is your sample volume?

< 2 mL Sample Volume

 4 mm Diameter
 15 mm Diameter
 25 - 28 mm Diameter

 Image: Comparison of the second seco

2 to 10 mL Sample Volume

2. What is your LC column ID?

3. What type of sample are you working with?

11 to 100 mL Sample Volume

Don't Forget!

All-Plastic Disposable Syringes

- Use for all syringe filter applications
- Luer-lock outlet makes connection easy
- Capacities ranging from 3 to 20 mL
- Made of ultra-clean, high-purity plastic

deionized water

Most Popular Filter Membrane Options

RC (Regenerated Cellulose)		PTFE, Teflon [®] (Polytetrafluoroethylene)		
For	Aqueous and Mixed Organic Solutions	For	100% Organic Solutions	
•	A broad range of aqueous and mixed-organic solutions	•	Well-suited for the clarification of non-aqueous samples	
•	Fast-flow and ultra-low protein and non-specific binding characteristics	•	Hydrophobic membrane, excellent for filtration of organic-based, highly acidic or basic samples and	
•	Broadly recommended as an excellent general purpose/high-performance sample filter for most applications	•	solvents A hydrophobic membrane, that can be made hydro- philic by wetting with alcohol and then flushing with	

Additional Syringe Filter Membranes

Membrane Types	Recommended Uses
PES (Polyethersulfone)	Polyethersulfone membranes exhibit very fast-flow and ultra-low protein binding characteristics. Phenex-PES membranes are typically broadly recommended for filtering critical biological samples, tissue culture media, additives and buffers.
NY (Nylon)	Nylon has inherent hydrophilic characteristics and works well for filtration of many aqueous and mixed-organic samples. In combination with a glass pre-filter (Phenex-GF/NY), this membrane is excellent for the filtration of particle-laden samples, such as foods and beverages, environmental, biofuels, and dissolution samples.
CA (Cellulose Acetate)	Cellulose Acetate (CA) membranes exhibit ultra-low protein binding and are broadly used in the filtration of biological samples. In combination with a glass pre-filter (Phenex-GF/CA), this membrane is excellent for filtration of tissue culture media, general biological sample filtration and clarification.
GF (Glass Fiber)	Glass Fiber (GF) filters are made of inert borosilicate glass and have a nominal 1.2 µm pore size. They are commonly used with highly viscous samples or samples containing high concentrations of particulate matter (e.g., food analysis, biological samples, soil samples, fermentation broth samples, removal of yeasts, molds, etc.).
PVDF (Polyvinylidene Fluoride)	Hydrophilic PVDF membrane provides high flow rates and throughput, low extractables, and broad chemical compatibility. This membrane binds less protein than nylon or PTFE membranes.

Syringe Filter Finder Visit: www.phenomenex.com/SyringeFilterFinder

Recommendations Based on Your Industry

Environmental

Water, wastewater, soil, sludge, and pollution control samples are especially challenging. No matter what the sample type, is Phenex offers filtration products that meet your demanding requirements.

Recommended Filter: GF/NY

First Alternative: RC

Pharmaceutical / Biotech

At every stage of the drug discovery process, target compounds must be isolated, purified, and prepared prior to testing. Sample complexity in DMPK work can be even more challenging. Difficult samples such as serum, urine, and other physiological fluids are easily filtered and clarified using Phenex syringe filters.

Biological Samples Recommended Filter: PES

First Alternative: RC

Clinical / Toxicology

Removal of particulate matter to sub-micron levels is critical before any clinical sample is injected into an LC, GC, or mass spectrometer. At every stage of toxicology, samples must be prepared prior to testing. In today's fast-paced environment, rapid and simple sample preparation is a must. Phenex is designed for higher flow rates and throughputs than those of competing products.

Recommended Filter: RC

First Alternative: PES

Food and Beverage

Food safety is more important than ever and lower detection limits are making analysis even more challenging. Accurate and reliable testing is critical to ensure food safety. Phenex filters are routinely used in preparation for analysis of pesticides, herbicides, fungicides, flavors, and fragrances. For samples with large amounts of particulate and/or large fibrous matter, use a glass fiber prefilter.

Recommended Filter: GF/NY

First Alternative: RC

Other Applications:

Application / Sample*	Recommended Filter**	First Alternative
General GC and LC	RC	PTFE
Aggressive or Pure Organic Solvents	PTFE	RC
High Particulate Loads	GF/NY	GF + RC
Dissolution Testing	GF/NY	RC
Ion Chromatography	RC	PES
Trace Metals (ICP-MS, AAS)	RC	PES
Capillary Electrophoresis (CE)	RC	PES
Tissue Cultures, Media, Buffers	GF/CA	PES

* Removal of high particulate matter with a glass fiber prefilter is critical before any drug, tox, or dirty environmental sample is filtered to ensure the highest syringe filter membrane performance.

** For high load and particulate-laden samples you may consider placing a Glass Fiber (GF) prefilter, either integrated with the membrane as one unit (Phenex-GF/NY or -GF/CA) or in series with the membrane syringe filter of your choice.

Generally, 0.45 µm porosity filters are used to remove particulates from samples and mobile phase solutions. For sterile-filtration, a 0.20 µm porosity filter can be used.

Don't miss out on FREE samples!

Visit: www.phenomenex.com/SyringeFilterFinder

Ordering Information

	4mm Diameter for ≤ 2 mL sample volumes15mm Diameter for 2-10 mL sample volumes		25–30mm for 11–100 mL s	Diameter ample volumes		
Membrane Type/Size	Part No.	Unit	Part No.	Unit	Part No.	Unit
0.20 µm						
Phenex-RC	AF0-3203-12	100/pk	AF0-2203-12	100/pk	AF0-8203-12	100/pk
(Regenerated Cellulose)	AF0-3203-52	500/pk	AF0-2203-52	500/pk	AF0-8203-52	500/pk
Phenex-PES ²	_		—	_	AF0-8208-12	100/pk
(Polyethersulfone)	_	_		_	AF0-8208-52	500/pk
Phenex-PTFE	AF0-3202-12	100/pk	AF0-2202-12	100/pk	<u>AF0-1202-12</u>	100/pk
(Polytetrafluoroethylene)	AF0-3202-52	500/pk	AF0-2202-52	500/pk	AF0-1202-52	500/pk
Phenex-NY (Nylop)	AF3-3207-12	100/pk	AFU-2207-12 AF0 2207 52	100/pk	AFU-1207-12	100/pk
	<u>AF3-3207-32</u>	500/рк	<u>AFU-2207-32</u>	500/pk	AF0-1207-32	100/pk
Phenex-GF/NY ¹ (Glass Fiber/Nylon)	An integrated syringe f Nylon (NY) membrane. beverages, environmer filter even the most dif	Excellent for filtration tal, biofuels, and dis ficult samples. Outle	an inert borosilicate glass on of particle-laden sample ssolution samples. Use les et connection is luer lock.	es, such as foods and ss hand pressure to	<u>AF0-1A47-12</u>	500/pk
Phenex-PVDF	_		AF6-5206-12	100/pk	AF6-6206-12	100/pk
(Polyvinylidene Fluoride)	_	_	AF6-5206-52	500/pk	AF6-6206-52	500/pk
Phonox CE/DVDE	An integrated syringe f	ilter unit containing	an inert borosilicate glass	fiber prefilter and a	AF6-6C06-12	100/pk
(Glass Fiber/Polyvinylidene Fluoride)	PVDF membrane. The l put, low extractables a than nylon or PTFE me	hydrophilic PVDF me nd broad chemical o mbranes.	embrane provides high flow compatibility. This membra	w rates and through- ane binds less protein	AF6-6C06-52	500/pk
Phenex-CA ³	_	_	-	_	AF0-8204-12	100/pk
(Cellulose Acetate)		<u> </u>			AF0-8204-52	500/pk
Phenex-GF/CA 1.2.3 (Glass Fiber/Cellulose Acetate)	and a CA membrane.	Excellent for filtration	ig an inert borosilicate gia on of tissue culture media connection is luer lock.	ass fiber prefilter a, general biological	<u>AF0-8A09-12</u> <u>AF0-8A09-52</u>	100/рк 500/pk
0.45 µm						
Phonox-PC	AF0-3103-12	100/pk	AF0-2103-12	100/pk	AF0-8103-12	100/pk
(Regenerated Cellulose)	ΔE0-3103-52	500/pk	AE0-2103-52	500/pk	ΔE0-8103-52	500/nk
	<u>AIO 0100 02</u>	000/pit	<u>MO 2100 02</u>	000/pit	AE0 9109 12	100/pk
Phenex-PES ² (Polyethersulfone)					AF0 9109 F2	F00/pk
(i oljouloloulollo)		100/ml/		100/pl/	AF0-0100-32	100/pk
Phenex-PTFE	<u>AFU-3102-12</u>	100/рк	<u>AFU-2102-12</u>	тоо/рк	<u>AFU-1102-12</u>	100/pk
(Polytetranuoroetnylene)	<u>AF0-3102-52</u>	500/pk	<u>AF0-2102-52</u>	500/pk	<u>AF0-1102-52</u>	500/рк
Phenex-NY	AF3-3107-12	100/pk	AF0-2107-12	100/pk	<u>AF0-1107-12</u>	100/pk
(Nylon)	<u>AF3-3107-52</u>	500/pk	AF0-2107-52	500/pk	<u>AF0-1107-52</u>	500/pk
DI 05/00/1	An integrated syringe f	ilter unit containing	an inert borosilicate glass	fiber prefilter and a	<u>AF0-1B47-12</u>	100/pk
(Glass Fiber/Nylon)	Nylon (NY) membrane. beverages, environmer filter even the most dif	Excellent for filtration ntal, biofuels, and dia ficult samples. Outle	on of particle-laden sample ssolution samples. Use les et connection is luer lock.	es, such as foods and as hand pressure to	<u>AF0-1B47-52</u>	500/pk
Phenex-PVDF	—	—	AF6-5106-12	100/pk	<u>AF6-6106-12</u>	100/pk
(Polyvinylidene Fluoride)	_	_	AF6-5106-52	500/pk	AF6-6106-52	500/pk
Phenex-GE/PVDE	An integrated syringe f	ilter unit containing	an inert borosilicate glass	fiber prefilter and a	AF6-6D06-12	100/pk
(Glass Fiber/Polyvinylidene Fluoride)	PVDF membrane. The hydrophilic PVDF membrane provides high flow rates and through- put, low extractables and broad chemical compatibility. This membrane binds less protein than nylon or PTFE membranes.				<u>AF6-6D06-52</u>	500/pk
Phenex-GF/CA 1,2,3	An integrated syringe	filter unit containin	ig an inert borosilicate gla	ass fiber prefilter	AF0-8B09-12	100/pk
(Glass Fiber/Cellulose Acetate)	and a CA membrane. sample filtration and o	Excellent for filtration	on of tissue culture media connection is luer lock.	a, general biological	AF0-8B09-52	500/pk
1.20 µm						
Phenex-GF 1,2	Prefiltration of heavily	contaminated or h	ighly viscous samples. W	hen used in-line	AF0-8515-12	100/pk
(Glass Fiber)	preceding a membrane filter, clogging of the membrane filter is prevented and sample clean up is optimized. Outlet connection is luer lock.				AF0-8515-52	500/pk

1. Glass fiber filters are 28 mm diameter and made of borosilicate. They will

remove 90 % of all particles > $1.2 \,\mu$ m.

2. Housing material is methacrylate butadiene styrene (MBS) polymerisate.

Also known as Cyrolite[®].

Above syringe filters are non-sterile. Housing is made of medical-grade polypropylene (PP). Luer lock inlet/slip outlet connections unless otherwise indicated. Additional dimensions and membrane types are available, including sterile filters. Please contact your local Phenomenex technical consultant or distributor for availability or assistance.

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

3. Cellulose acetate is surfactant-free.

Reduce 4 Products to 1: Verex Filter Vials

Verex Filter Vials combines syringe filter and vial technology, eliminating the need for separate syringes, syringe filters, vials, and cap/septa, allowing you to reduce lab waste and simplify your workflow.

Verex Filter Vials are an easy two-step sample preparation device that consists of two parts: an external vial to be filled with sample and an internal plunger with a filtration membrane and cap with a pre-slit septa.

How to Use Filter Vials

By compressing the internal plunger, the sample is pushed through the membrane and filtered.

Now the Verex Filter Vial is ready to be placed into the autosampler!

Simply dispense your sample and filter!

Ordering Information

Description	Pore Size	Part No.	Unit
Verex Filter Vial-RC	0.20 µm	<u>AR0-F103-12</u>	100/pk
(Regenerated Cellulose)	0.45 µm	<u>AR0-F203-12</u>	100/pk
Verex Filter Vial-PTFE (Polytetrafluoroethylene)	0.20 µm	<u>AR0-F102-12</u>	100/pk
	0.45 µm	<u>AR0-F202-12</u>	100/pk
Verex Filter Vial-NY	0.20 µm	<u>AR0-F107-12</u>	100/pk
(Nylon)	0.45 µm	<u>AR0-F207-12</u>	100/pk
Verex Filter Vial-PES	0.20 µm	<u>AR0-F108-12</u>	100/pk
(Polyethersulfone)	0.45 µm	<u>AR0-F208-12</u>	100/pk
Verex Filter Vial-PVDF	0.20 µm	<u>AR0-F106-12</u>	100/pk
(Polyvinylidene Fluoride)	0.45 µm	<u>AR0-F206-12</u>	100/pk

Protein Precipitation

Protein precipitation is a quick and easy way to remove proteins from samples using an organic solvent or a salt

- Typically used with plasma, whole blood, and other proteinaceous biological samples
- Proteins decrease HPLC/UHPLC column lifetime and can interfere with MS detector sensitivity, compromising reliable results
- Fast, easy protocol: Perform precipitation and filtration sequential in the same plate.

www.phenomenex.com/Impact

Rapid Protein Precipitation Without the Complications

Fast Analysis

- Save time and increase efficiency by performing precipitation and filtration sequentially in the same plate
- Fast, easy to follow protocol; clean 96 samples in under 15 minutes
- Automatable process for higher productivity

Reliability

- Filtering instead of pelleting precipitated protein ensures clean samples without additional transfer steps
- Avoid injecting protein onto your column resulting in longer column lifetime and improved chromatography

No More Filtrate Transfer Steps

- No manual or automated filtrate transfer steps required
- Reduce errors and risk of contamination

Solvent Shielding Technology[™] Specially treated filters effectively hold organic solvent and trap protein precipitates for up to 25 minutes, allowing for direct in-well precipitation upon sample addition. The precipitate is then filtered out via vacuum, centrifuge or positive pressure resulting in a clean, protein depleted extract.

Protein Precipitation Plate CE0-7565 Serial Number: 55893

Kanamona

See How Impact Works Visit: www.phenomenex.com/impact

One Simple Method!

4 Quick Steps

Dispense

Organic solvent into the wells of the Impact plate in a volume of 3 - 4x the volume of the intended plasma or tissue homogenate sample.

dd

Plasma or tissue homogenate directly and forcefully into the organic solvent, maintain a final ratio of 3:1 to 4:1 organic solvent sample.

/ortex[†]

2 minutes at maximum possible speed, taking care not to allow solvent spillage. Sample can sit for up to 25 minutes with Solvent Shielding Technology™

04

Centrifuge

Place the Impact plate on top of a collection plate and centrifuge at 500 g for 5 minutes or until filtrate is collected.

Vacuum

Place the Impact plate onto a suitable 96-well sample manifold or robot. Ensure that a 96-well collection plate is positioned inside the manifold or under the Impact plate. Vacuum at 2 - 7 inch Hg for up to 5 minutes or until filtrate is collected.

Positive Pressure

Place the Impact plate on top of a collection plate and apply 2 - 5 psi using a positive pressure manifold.

* A 3:1 v/v ratio of organic solvent to biological sample will dilute your sample less. In contrast, a 4:1 v/v ratio of organic solvent to biological sample will ensure a more complete precipitation. A 4:1 v/v ratio is recommended when using methanol.

[†] When used with a liquid-handling instrument or automation, aspirate/dispense cycles may be used to promote in-tip mixing and precipitation. This will ensure complete precipitation and filtration. Vortexing is not necessary when in-tip precipitation is performed.

Designed to Eliminate the Problems of Conventional Filtration Products

Leak-Free Protein Precipitation

The oleophobic filters of the Impact plates effectively hold organic solvent allowing the precipitation reaction to occur inside the plate. Unlike conventional protein precipitation products, Impact will not leak solvent or sample until force is applied resulting in a clean precipitation.

Can retain acetonitrile with no leaks for up to 25 minutes

High Recoveries of Acids, Bases, and Neutrals

Non-specific binding of analytes on the membrane surface leads to reduced analyte recovery. Impact has specially treated filters, which will not bind target analytes resulting in maximized recovery.

Ordering Information

Part No.	Description	Unit
Impact Pre	cipitation Products	
<u>CE0-7565</u>	Impact Protein Precipitation, Square Well, Filter Plate, 2 mL	2/pk
<u>CE0-7566</u>	Impact Protein Precipitation, Square Well, Long Drip, Filter Plate, 2 mL	2/pk
Impact Sta	rter Kit for Protein Precipitation	
<u>CE0-8201</u>	Impact Protein Precipitation Plate (2 ea) Collection Plate 2 mL (2 ea) Sealing Mat, Santoprene™ (2 ea)	ea

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

β-Glucuronidase Removal

Urine that has been hydrolyzed using β -Glucuronidase contains a large enzyme that can ruin LC column lifetimes and increase MS maintenance, costing labs time and more money.

- Easy and quick method for removing β-Glucuronidase
- Remove large interferences and increase sensitivity better than dilute-and-shoot
- Save LC columns from premature death and MS systems from excessive downtime and maintenance.

www.phenomenex.com/BetaGone

Now with In-Well Hydrolysis Capabilities!

Save time on transfer steps and reduce consumable costs with β -Gone Plus 96-Well Plates.

Clean-up Hydrolyzed Urine in Under 1 Minute

In two steps, ensure that your samples are free of β -Glucuronidase

No Method Development

- Load hydrolyzed urine onto plate or tube and apply vacuum, positive pressure, or centrifuge.
- Collect clean samples for HPLC/UHPLC analysis.
- Save LC columns from premature death and MS systems from excessive downtime and maintenance.

No Additional Time

- A better clean up than Dilute-and-Shoot, without adding any additional minutes to your work flow.
- This method can be automated to save even more time. Even faster than proterin precipitation or SPE!

Load urine and hydrolysis solution in β-Gone Plus 96-well plate, incubate β-Gone Plus Protocol Step Load Initiate vacuum and collect eluate Step Collect **B**Gone[®] **Skip The Transfer Step B**Gone[®] Clean samples in under 1 minute! Want to Learn More? Visit: www.phenomenex.com/betagone

Don't Compromise Results High Recoveries with Increased Sensitivity

App ID 23627

High Recoveries for a Panel of Drugs

	% Reco	very		% Reco
Analyte	Non-Recombinant (natural) Enzyme	Recombinant Enzyme	Analyte	Non-Recombinant Analyte (natural) Enzyme
6-MAM	89	109	Methadone	Methadone 104
7-Aminoclonazepam	87	76	Methamphetamine	Methamphetamine 105
alpha-Hydroxyalprazolam	96	93	Methylphenidate	Methylphenidate 108
Alprazolam	101	80	Morphine	Morphine 100
Amitriptyline	103	77	Naloxone	Naloxone 93
Amphetamine	99	92	Norbuprenorphine	Norbuprenorphine 110
Benzoylecgonine	99	110	Nordiazepam	Nordiazepam 85
Buprenorphine	104	91	Norfentanyl	Norfentanyl 109
Carisoprodol	95	75	Norhydrocodone	Norhydrocodone 113
Citalopram	106	95	Noroxycodone	Noroxycodone 106
Codeine	99	97	Nortriptyline	Nortriptyline 101
Cotinine	114	96	0-Desmethyltramadol	0-Desmethyltramadol 107
Diazepam	100	78	Oxazepam	Oxazepam 90
EDDP	106	84	Oxycodone	Oxycodone 99
Fentanyl	105	79	Oxymorphone	Oxymorphone 94
Fluoxetine	105	94	Paroxetine	Paroxetine 102
Gabapentin	97	88	PCP	PCP 102
Hydrocodone	104	93	Pregabalin	Pregabalin 102
Hydromorphone	99	95	Ritalinic Acid	Ritalinic Acid 95
Imipramine	107	90	Tapentadol	Tapentadol 106
Lorazepam	91	85	Temazepam	Temazepam 93
MDA	102	92	THC-COOH	THC-C00H 70
MDEA	106	89	Tramadol	Tramadol 107
MDMA	104	91	Zolpidem	Zolpidem 106
Meperidine	102	89	Zolpidem4carboxy	Zolpidem4carboxy 96
Menrohamate	03	73		

Increase Your Sensitivity: β-Gone vs. Dilute-and-Shoot

β-Gone Procedure: To 200 μL spiked urine (spiked at 100 ng/mL), add 133 μL 0.1 % Formic acid in Methanol. Pass through β-Gone tube or 96-well plate and collect eluent.

Dilute-and-Shoot Procedure: Dilute spiked urine (spiked at 100 ng/mL) 10-fold with 0.1 % Formic acid in Water.

Non-Recombinant β-Glucuronidase Enzyme processed by Dilute-and-Shoot

Gone

Ordering Information

Part No.	Description	Unit
8B-S139-TAK	1mL Tubes, Recombinant Enzyme	100/Box
8B-S322-DAK	1mL Tubes, Non-Recombinant Enzyme	100/Box
8E-S139-TGA	96 Well-Plate, Recombinant Enzyme	1/Box
8E-S322-DGA	96 Well-Plate, Non-Recombinant Enzyme	1/Box
8N-S323-TUK	2mL Centrifuge Tubes, Recombinant and Non-Recombinant Enzyme	100/Box
8E-S323-UGA	96-Well Plate Plus 60 mg/well, Recombinant/Non-recombinant Enzyme	1/Box

/.000000		
Part No.	Description	Unit
Collection Plates	(deep well, polypropylene)	
AH0-7192	96-Well Collection Plate 350 µL/well	50/pk
AH0-7193	96-Well Collection Plate 1 mL/well	50/pk
AH0-7194	96-Well Collection Plate 2 mL/well	50/pk
AH0-8635	96-Well Collection Plate, 2 mL Square/Round-Conical	50/pk
AH0-8636	96-Well Collection Plate, 2 mL Round/Round, 8 mm	50/pk
AH1-7025	96-Well Collection Plate, 1 mL/well Round, 7 mm	50/pk
AH0-9332	96-Well Collection Plate, 1.2 mL/well Round Well Round Bottom	50/pk
AH0-9333	96-Well Collection Plate, 0.5 mL/well V-Bottom, 7 mm Sterile	50/pk
AH0-9341	96-Well Collection Plate, 0.5 mL/well Conical Bottom 7 mm	50/pk
AH1-7036	96-Well Low-Bind Collection Plate, 2 mL/well Round Well Conical Bottom (glass lined)	120/pk
Sealing Mats		
AH0-8597	Sealing Mats, Pierceable, 96-Square Well, Silicone	50/pk
AH0-8598	Sealing Mats, Pre-Slit, 96-Square Well, Silicone	50/pk
AH0-8631	Sealing Mats, Pierceable, 96-Round Well 7 mm, Silicone	50/pk
AH0-8632	Sealing Mats, Pre-Slit, 96-Round Well 7 mm, Silicone	50/pk
AH0-8633	Sealing Mats, Pierceable, 96-Round Well 8 mm, Silicone	50/pk
AH0-8634	Sealing Mats, Pre-Slit, 96-Round Well 8 mm, Silicone	50/pk
AH0-7362	Sealing Tape Pad	10/pk
Vacuum Manifol	ts .	
<u>VM12</u>	SPE 12-Position Vacuum Manifold Set, for tubes	ea
<u>VM24</u>	SPE 24-Position Vacuum Manifold Set, for tubes	ea
AH0-8950	96-Well Plate Manifold, Universal with Vacuum Gauge	ea
*Manifolds includ	e: Vacuum-tight glass champer vacuum gauge assembly, polypropylene lid with gasket	male and

*Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-positive manifold.

BE-HAPPY GUARANTEE

3 Gone

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

Phospholipid Removal

Endogenous phospholipids are a primary source of ion suppression and resulting matrix effects in bioanalytical LC-MS work.

Presence of phospholipids can result in:

- Irreproducible results
- Quantitation issues
- Loss in method sensitivity
- Matrix to matrix bias

www.phenomenex.com/Phree

Removing Phospholipids Reduces Matrix Effects

Total Phospholipid Profile

Protein Precipitation vs. Phree Phospholipid Removal Products

See How Phree Phospholipid Removal Plates Work Visit: www.phenomenex.com/Phree

Reduce Ion Suppression

250

The presence of phospholipids in plasma samples produces zones of ion suppression that correlate exactly with the phospholipid elution profile when analyzed via mass spectrometer (MS).

Maximize Sensitivity and Column Lifetime

Phospholipids reduce the sensitivity of the MS signal and shorten column lifetime when they build up over time.

To assess the effect of phospholipid build up, repetitive 20 µL injections of diclofenac in protein precipitated plasma versus diclofenac in Phree extracted plasma were made.

How Phree Works

Solvent Shielding Technology[™] prevents dripping of organic solvent, allowing for protein

Eliminate Phospholipids

The Phree sorbent selectively removes phospholipids from precipitated plasma

Recoveries

60

Absolute recoveries for acidic, basic, and neutral analytes using Phree Phospholipid Removal, Waters® Oasis® HLB SPE and Biotage® Evolute® ABN SPE.

Phenomenex is not affiliated with Waters Seperation Corp. or Biotage AB Corp. Comparative seperations may not be representative of all applications.

N=5 for all cleanup techniques

Phenomenex is not affiliated with Waters Separations Corp or Biotage AB Corp. Comparative separations may not be representative of all applications.

One Quick Method

Ordering Information

Phree Phospholipid Removal Products

i ui t iioi	Beschption	Unit
8B-S133-TAK	Phree Phospholipid Removal Tabbed 1 mL Tubes	100/box
8E-S133-TGB	Phree Phospholipid Removal 96-Well Plates	2/box
Accessories		
Part No.	Description	Unit
Collection Plate	s (deep well, polypropylene)	
<u>AH0-7192</u>	96-Well Collection Plate 350 µL/well	50/pk
<u>AH0-7193</u>	96-Well Collection Plate 1 mL/well	50/pk
<u>AH0-7194</u>	96-Well Collection Plate 2 mL/well	50/pk
AH0-8635	96-Well Collection Plate, 2 mL Square/Round-Conical	50/pk
AH0-8636	96-Well Collection Plate, 2 mL Round/Round, 8 mm	50/pk
AH1-7025	96-Well Collection Plate, 1 mL/well Round, 7 mm	50/pk
AH0-9332	96-Well Collection Plate, 1.2 mL/well Round Well Round Bottom	50/pk
AH0-9333	96-Well Collection Plate, 0.5 mL/well V-Bottom, 7 mm Sterile	50/pk
AH0-9341	96-Well Collection Plate, 0.5 mL/well Conical Bottom 7 mm	50/pk
AH1-7036	96-Well Low-Bind Collection Plate, 2 mL/well Round Well Conical Bottom (glass lined)	120/pk
Sealing Mats		
AH0-8597	Sealing Mats, Pierceable, 96-Square Well, Silicone	50/pk
<u>AH0-8598</u>	Sealing Mats, Pre-Slit, 96-Square Well, Silicone	50/pk
AH0-8631	Sealing Mats, Pierceable, 96-Round Well 7 mm, Silicone	50/pk
AH0-8632	Sealing Mats, Pre-Slit, 96-Round Well 7 mm, Silicone	50/pk
AH0-8633	Sealing Mats, Pierceable, 96-Round Well 8 mm, Silicone	50/pk
AH0-8634	Sealing Mats, Pre-Slit, 96-Round Well 8 mm, Silicone	50/pk
AH0-7362	Sealing Tape Pad	10/pk
Vacuum Manifo	ds	
<u>VM12</u>	SPE 12-Position Vacuum Manifold Set, for tubes	ea
<u>VM24</u>	SPE 24-Position Vacuum Manifold Set, for tubes	ea
<u>AH0-8950</u>	96-Well Plate Manifold, Universal with Vacuum Gauge	ea

BE-S133-TGB

N IS NOT THE OWNER.

*Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-positive manifold.

Sample Preparation Specialists are Ready to Assist You.

Contact your Sample Preparation Specialist By email: SamplePrepSpecialist@Phenomenex.com

BE-HAPPY GUARANTEE

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

=0

QuEChERS

Quick-Easy-Cheap-Effective-Rugged-Safe

The QuEChERS technique radically simplifies multi-residue analysis in food and other complex samples.

- Decreases complicated long extraction procedures
- Reduces use of hazardous solvents
- · Ease to use with two step method

Extraction

Pesticides and analytes of interest must first be extracted from the food sample. This process relies on the combination of organic solvent and various salts to partition the analytes from food samples into an organic layer (typically acetonitrile).

Clean Up/Dispersive SPE (dSPE)

An aliquot of the organic layer from the extraction step is subjected to further clean up by dispersive SPE. This step selectively removes unwanted interferences such as lipids and pigments.

www.phenomenex.com/roQ

The QuEChERS Technique

QuEChERS Kits

Salts and Sorbents used in roQ Kits

1. Extraction

AOAC 2007.01 Method

Salts used:

- Magnesium Sulfate (MgSO₄)
- Induces phase separation between water content in sample and acetonitrile layer
 Sodium Acetate (NaAOc)
- Buffers the sample to stabilize pH

Original Non-Buffered Method

- Salts used:
- Magnesium Sulfate (MgSO) Induces phase separation between water content in sample and acetonitrile layer
 Sodium Chloride (NaCl)

Induces phase separation between water content in sample and acetonitrile layer

EN 15662 Method

Salts used:

- Magnesium Sulfate (MgSO₄)
- Induces phase separation between water content in sample and acetonitrile layer
 Sodium Chloride (NaCl)
- Induces phase separation between water content in sample and acetonitrile layer
- Sodium Citrate Tribasic Dihydrate (SCTD)
 Buffers the sample to stabilize pH
- Sodium Citrate Dibasic Sesquihydrate (SCDS) Buffers the sample to stabilize pH

2. Clean Up/dSPE

Salts and sorbents used:

- Magnesium Sulfate (MgSO₄) Removes excess water from sample
- Primary/Secondary Amine (PSA) Removes organic acids, fatty acids, sugars, and anthocyanine pigments from sample
- Endcapped C18 Sorbent (C18E) Removes fats, sterols, and other non-polar interferences from sample
- Graphitized Carbon Black (GCB)
 Removes pigments from sample
 NOT FOR USE WITH PLANAR PESTICIDES

roQ QuEChERS Kits Succeed Where Others Fail

Improved with you in mind, the unique design of the roQ QuEChERS kits eliminates common problems seen with current QuEChERS kits on the market.

Ease of Use

Quality

Technical Support

Sample Preparation Support at Your Fingertips

- Dedicated sample preparation team available to assist your method development needs
- Expertise in sample preparation and solid phase extraction
- Access to up-to-date sample preparation applications

Free Method Development Services

• Let our specialists help you with new method development, method optimization, and validation, including FDA compliant and GMP compliant validation.

We're Here to Help!

Contact your Sample Preparation Specialist Email:

SamplePrepSpecialist@Phenomenex.com

Choose Your QuEChERS Kit

#02

Clean up/Dispersive SPE (dSPE)

	AOAC 2	2007.01	EN 15662		
	1 mL	8mL	1 mL	6 mL	
General					
	150 mg MgSO ₄	1200mg MgSO ₄	150 mg MgSO₄	900mg MgSO ₄	
1	50 mg PSA	400 mg PSA	25 mg PSA	150 mg PSA	
	<u>KS0-9511</u>	<u>KS0-9515</u>	<u>KS0-9503</u>	<u>KS0-9507</u>	
Fats and Waxes	150 mg MgSO₄	1200 mg MgSO ₄	150mg MgSO₄	900mg MgSO4	
	50 mg PSA	400 mg PSA	25 mg PSA	150 mg PSA	
	50 mg C18E	400 mg C18E	25 mg C18E	150 mg C18E	
	KS0-9512	KS0-9516	KS0-9504	KS0-9508	
Pigmented	150 mg MgSO₄	1200 mg MgSO ₄	150mg MgSO₄	900mg MgSO ₄	
	50 mg PSA	400 mg PSA	25 mg PSA	150 mg PSA	
- C	50 mg GCB	400 mg GCB	2.5 mg GCB	15 mg GCB	
	<u>KS0-9513</u>	<u>KS0-9517</u>	KS0-9505	KS0-9509	
Highly Pigmented			150mg MgSO₄	900mg MgSO4	
			25 mg PSA	150 mg PSA	
	—	_	7.5 mg GCB	45 mg GCB	
			KS0-9506	<u>KS0-9510</u>	
Pigments and	150 mg MgSO₄	1200 mg MgSO ₄			
Fats	50 mg PSA	400 mg PSA			
	50 mg GCB	400 mg GCB	-	-	
	50 mg C18E	400 mg C18E			
	KS0-9514	KS0-9518			

Recommended roQ Extraction and dSPE Kits

Mycotoxins Screening-Grains

Extraction	Analytical Column: Kinetex [™] Core-Shell 2.6 µm Biphenyl
EN 15662 Method	1.7e6 1.6e6 -
4.0 g MgSO ₄ , 1.0 g NaCl, 1.0 g SCTD, 0.5 g SCDS	1.5e6 - 1.4e6 -
<u>KS0-8909</u>	1.3e6 – 1.2e6 –
Clean up/dSPE	1.1eb - 1.0e6 -
EN 15662 Method	8.0e5 - 7 0e5 -
900 mg MgSO_4 , 150 mg PSA	6.0e5 - 5.0e5 -
KS0-9507	4.0e5 - 3.0e5
	2.0e5 - 10e5 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Pesticide Screening-Kale

Extraction	Analytic	al Column: Kinetex Core-Shell 5 µm Biphenyl
EN 15662 Method	5.4e6	
4.0 g MgSO ₄ , 1.0 g NaCl, 1.0 g SCTD, 0.5 g SCDS	5.0e6	
KS0-8909		
	4.5e6	
Clean un/dSPE	4.0e6	
FN 15662 Method	3 5 6 6	
15 mL dSPE Kits	0.000	
$900 \mathrm{mg}\mathrm{MgSO}_4$, 150 mg PSA, 15 mg GCB	3.0e6	
<u>KS0-9509</u>		
	2.5e6	
	2.0.00	
Read the full technical note online	2.000	
soarch TN-0115 on	1.5e6	
Sedicit <u>Intention</u> off		
www.phenomenex.com	1.0e6	Sector Se
		0.244
	5.0e5	
	0.0	

Antibiotics-Meats

Extraction	Analytical Column: Kinetex Core-Shell 2.6 µm Biphenyl	
AOAC 2007.01 Method	2.1e6 2.0e6 -	
6.0 g MgSO₄, 1.5 g NaOAc	1.8e6 -	
<u>KS0-8911</u>	1.606 -	
	1.4e6 -	
Clean up/dSPE	1.2e6 -	
15 mL dSPE Kits	1.0e6 -	
$900 \mathrm{mg}\mathrm{MgSO}_4$, 150 mg PSA, 15 mg GCB	8.0e5 -	61
150 mg C18E	6.0e5 -	221
<u>KS0-9509</u>	4.0e5 -	DIq
	2.0e5 -	Ap

Ordering Information

Extraction kits contain fifty easy-pour salt packets and fifty 50 mL stand-alone centrifuge tubes

Description	Unit	Part No.		
AOAC 2007.01 Method Extraction Kits				
6.0 g MgSO ₄ , 1.5 g NaOAc	50/pk	KS0-8911*		
EN 15662 Method Extraction Kits				
4.0 g MgSO_4 , 1.0 g NaCl, 1.0 g SCTD, 0.5 g SCDS	50/pk	KS0-8909*		
Original Non-buffered Method Extraction Kits				
4.0 g MgSO₄, 1.0 g NaCl	50/pk	<u>KS0-8910</u>		
6.0 g MgSO ₄ , 1.5 g NaCl	50/pk	KS0-8912		
AOAC and EN Extraction Kits also available in traditional non-collared 50 mL centrifuce tubes.				

*AUAC and EN Extraction Kits also available in traditional non-collared 50 mL centrifuge tubes, Part No.: <u>KS0-8911-NC</u> and <u>KS0-8909-NC</u>

roQ dSPE Kits

dSPE kits contain pre-weighed sorbents/salts inside $2\,mL$ or $15\,mL$ centrifuge tubes

besonption	Unit	Part No.
2 mL dSPE Kits		
150 mg MgSO ₄ , 25 mg PSA, 25 mg C18E	100/pk	KS0-9504
150 mg MgSO_{a} , 25 mg PSA, 2.5 mg GCB	100/pk	KS0-9505
150 mg, MgSO ₄ , 25 mg PSA, 7.5 mg GCB	100/pk	KS0-9506
150 mg MgSO ₄ , 25 mg PSA	100/pk	KS0-9503
150 mg MgSO ₄ , 50 mg PSA, 50 mg C18E, 50 mg GCB	100/pk	KS0-9514
150 mg MgSO ₄ , 50 mg PSA, 50 mg C18E	100/pk	KS0-9512
150 mg MgSO_4 , 50 mg PSA, 50 mg GCB	100/pk	KS0-9513
150 mg MgSO_4 , 50 mg PSA	100/pk	KS0-9511
15 mL dSPE Kits		
900 mg MgSO ₄ , 150 mg PSA, 150 mg C18E	50/pk	<u>KS0-9508</u>
900 mg MgSO_4 , 150 mg PSA, 15 mg GCB	50/pk	<u>KS0-9509</u>
900 mg MgSO ₄ , 150 mg PSA, 45 mg GCB	50/pk	<u>KS0-9510</u>
900 mg MgSO ₄ , 150 mg PSA	50/pk	KS0-9507
1200 mg MgSO ₄ , 400 mg PSA, 400 mg C18E, 400 mg GCB	50/pk	KS0-9518
1200 mg MgSO ₄ , 400 mg PSA, 400 mg C18E	50/pk	KS0-9516
1200 mg MgSO ₄ , 400 mg PSA, 400 mg GCB	50/pk	KS0-9517
1200 mg MgSO ₄ , 400 mg PSA	50/pk	KS0-9515

roQ Extraction Salt Packets

Salt packets only. Centrifuge tubes not included.

Description	Unit	Part No.
AOAC 2007.01 Method Extraction Packets		
6.0 g MgSO ₄ , 1.5 g NaOAc	50/pk	<u>AH0-9043</u>
EN 15662 Method Extraction Packets		
$4.0 \mathrm{g}\mathrm{MgSO}_4$, $1.0 \mathrm{g}\mathrm{NaCl}$, $1.0 \mathrm{g}\mathrm{SCTD}$, $0.5 \mathrm{g}\mathrm{SCDS}$	50/pk	<u>AH0-9041</u>
Original Non-Buffered Method Extraction Packets		
4.0 g MgSO ₄ , 1.0 g NaCl	50/pk	AH0-9042
6.0 g MgSO ₄ , 1.5 g NaCl	50/pk	<u>AH0-9044</u>

Bulk roQ QuEChERS Sorbents

Phase	10 g	100 g
C18-E	_	<u>04G-4348</u>
GCB (Graphitized Carbon Black)	<u>04D-4615</u>	04G-4615
PSA	_	04G-4610

BE-HAPPY GUARANTEE

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

www.phenomenex.com/roQ

- Applications
- Technical Notes
- Tutorials and Webinars
- Tools
- And more

Supported Liquid Extraction

Supported Liquid Extraction (SLE) is a faster, easier, and more reliable way to perform liquid-liquid extractions

- Eliminate interferences from your analysis
- Remove unwanted interferences such as proteins and phospholipids from biological samples without performing extensive method development
- Provides consistent, reliable results from lot-to-lot
- In two unique sorbent types: a natural diatomaceous earth and a synthetic dependable sorbent

www.phenomenex.com/Novum

Now with Novum PRO SLE!

Get down to low extraction levels (LLOD) with reduced background noise due to our advanced manufacturing processes.

Supported Liquid Extraction

Get Down to the Lowest Extraction Levels with Novum PRO SLE

Offers the same reliable synthetic sorbent as Novum with additional clean manufacturing steps to reach low levels of detection for sensitive MS applications, with the same quality reproducibility for high-throughput samples.

- Specific manufacture capabilities to improve matrix factor response and reduce noisy baselines for low level testing of biological samples
- API 6500+ fit for purpose testing to ensure clean baseline with each batch
- Available in both MINI and MAX 96-well plate formats for high-throughput applications

5 pg/mL (LLOQ) Estriol (E3)

Easy Method Development

- Screen elution solvents in less time
- Easily determine the best solvent to use for clean backgrounds

Low Level Detection

 Applications that require low levels of detection and sensitivity can now be met by Novum PRO SLE

Equivalent reliability to traditional synthetic Novum SLE

View more applications and information about Novum PRO SLE at www.phenomenex.com/Novum

Select Your SLE Sorbent! View the differnces in our sorbent options

		Supported Liquid Extraction
Synthetic	Sorbent	Diatomaceous Earth
Lot-to-lot consistency and reproducibility	Advantages	Cost effective and large volume capabilities
Ethyl Acetate, Methyl Tert-Butyl Ether (MTBE)	Extraction Solvents	Dichloromethane (DCM) Hexane, MTBE, Ethyl Acetate
MINI 96-Well Plates, MAX 96-Well Plates	Plate Formats	200µL 96-Well Plates, 400µL 96-Well Plates
1cc, 3cc, 6cc, 12cc	Tube Formats	1cc, 3cc, 6cc, 12cc, 60cc

Still need help? SLE sorbent selections are dependent on extraction solvents, sample volumes, and analytes being extracted. To learn which SLE product is right for your extraction method: Image: Step of the selection of the select

Synthetic SLE Sorbent

Consistent, High Recoveries of Target Analytes

Avoid Inferior Results Due to Emulsions

Emulsions are associated with traditional liquid-liquid extraction and are the root cause of analyte loss and contamination. Novum SLE eliminates the formation of emulsions, maximizing your analyte recovery while reducing contamination.

Research Drug Panel from Urine

Analyte	% RSD
Amphetamine	3
Buprenorphine	5
Codeine	10
Fentanyl	6
MDEA	4
MDMA	4
Meperidine	9
Meprobamate	7
Methadone	2
Methamphetamine	12
Nordiazepam	1
Norfentanyl	3
Normeperidine	4
PCP	2
Propoxyphene	9
Sufentanil	11
Temazepam	2
Tramadol	9

Extraction Method

1

- Load diluted urine (diluted 1:1 with 0.5 M Ammonium hydroxide) onto Novum MAX SLE 96-well plate, apply vacuum for 2-15 seconds
- 2 Allow sample to soak into Novum SLE sorbent for 5 minutes
- 3 Elute with ethyl acetate

Frust Your Results

Novum SLE simplifies the liquid-liquid extraction process and provides consistent recoveries from sample to sample. Never worry about analyte loss due to incomplete manual separation of liquid phases or the formation of emulsions.

Diatomaceous Earth SLE Sorbent

Packed with diatomaceous earth, Strata DE is a cost-effective alternative to traditional SLE products such as Biotage[®] ISOLUTE[®] SLE+, Thermo Fisher[®] Hypersep[™] SLE, and Agilent[®] Chem Elut[™] SLE that wont require you to sacrifice your results. Recommended as a direct alternative to traditional diatomaceous earth SLE sorbents.

> Load Your Sample قالة 101 Aqueous Solver

E 02

Collect your Target Analytes in Water Immisible Solvent

Table 1.

Recovery Values and % CVs: Strata DE vs. Biotage ISOLUTE SLE+

Analyte	Strata DE		Biot ISOLUT	age E SLE+
	% CV Recovery (n= <u>8</u>)		% Recovery	% CV (n=8)
6-MAM	98	9	88	16
Alprazolam	104	10	98	11
Benzoylecgonine	88	6	98	11
Buprenorphine	93	7	102	15
Codeine	99	12	93	9
Diazepam	107	7	104	6
Fentanyl	85	5	94	8
Hydrocodone	104	11	93	11
Hydromorphone	95	9	93	11
Lorazepam	94	8	98	8
Methamphetamine	92	16	102	8
Morphine	98	12	94	12
Norbuprenorphine	101	11	92	11
Nordiazepam	100	9	92	8
Norfentanyl	113	7	110	11
Oxycodone	97	5	93	11
PCP	90	7	98	6

SLE Protocol

96-Well Plate:	Strata DE SLE 400 μL 96-Well Plate Biotage ISOLUTE SLE+ 400 μL 96-Well Plate
Part No.:	<u>8E-S325-5GB</u> (Strata DE)
Load:	300 µL pre-treated sample onto plate (apply vacuum or positive pressure to pull/push sample into sorbent if necessary
Wait:	6 minutes
Elute:	3x 600 µL Dichloromethane/IPA (95:5)
Apply:	Vacuum or apply positive presure at 5-10» Hg for 10 seconds
Dry:	Sample under slow stream of Nitrogen at 30 °C
Reconstitute:	100 μL 0.1% Formic Acid/Methanol (4:1) with internal standard

Achieve the Same Recoveries as Biotage ISOLUTE SLE+, at a Lower Price!

Ordering Information

Novum[™] Supported Liquid Extraction 96-Well Places.

Novum SLE Well Plates					
Part No.	Description	Unit			
8E-S138-FGA	Novum SLE MINI 96-Well Plate	1/pk			
8E-S138-5GA	Novum SLE MAX 96-Well Plate	1/pk			
Part No.	Description	Unit			
8E-S138-FGA	Novum SLE MINI 96-Well Plate	1/pk			
8E-S138-5GA	Novum SLE MAX 96-Well Plate	1/pk			
8E-S539-FGA	Novum PRO SLE MINI, 96-Well Plate	1/pk			

1/pk

Strata DE SLE Well Plates.

Novum Simplified Liquid Extraction SLE Well Plates							
Part No.	Description	Unit					
8E-S325-FGB	Strata DE SLE 200 µL 96-Well Plate	2/pk					
8E-S325-5GB	Strata DE SLE 400 µL 96-Well Plate	2/pk					

Novum PRO SLE MAX, 96-Well Plate

Novum SLE Tubes

8E-S539-5GA

Novum Simplified Liquid Extraction (SLE) Tubes								
Part No.	Description	Unit						
8B-S138-FAK	Novum SLE 1 cc Tubes	100/pk						
8B-S138-5BJ	Novum SLE 3 cc Tubes	50/pk						
8B-S138-JCH	Novum SLE 6 cc Tubes	30/pk						
8B-S138-KDG	Novum SLE 12 cc Tubes	20/pk						

Strata DE SLE Tubes

Strata-DE Diatomaceous Earth SLE Tubes								
Part No.	Description	Unit						
8B-S325-KDG	Strata DE SLE 12 cc Tubes	20/pk						
8B-S325-VFF	Strata DE SLE 60 cc Tubes	16/pk						
8B-S325-FAK	Strata DE SLE 1 cc Tubes	100/pk						
8B-S325-5BJ	Strata DE SLE 3 cc Tubes	50/pk						
8B-S325-JCH	Strata DE SLE 60 cc Tubes	30/pk						

Tube Accessories

Vacuum Manfolds							
Part No.	Description	Unit					
AH0-6023	12-Position Vacuum Manifold Set	ea					
<u>AH0-6024</u>	24-Position Vacuum Manifold Set	ea					

Well Plate Accessories

Part No.	Description	Unit
Collection Plates (deep well, polypropylene)	
AH0-7192	96-Well Collection Plate, 350 µL/well	50/pk
AH0-7193	96-Well Collection Plate, 1mL/well	50/pk
AH0-7194	96-Well Collection Plate, 2mL/well	50/pk
AH0-8635	96-Well Collection Plate, 2mL Square/Round-Conical	50/pk
AH0-8636	96-Well Collection Plate, 2mL Round/Round, 8mm	50/pk
AH1-7025	96-Well Collection Plate, 1mL/well Round, 7mm	50/pk
<u>AH0-9332</u>	96-Well Collection Plate, 1.2 mL/well Round Well Round Bottom	50/pk
<u>AH0-9333</u>	96-Well Collection Plate, 0.5 mL/well V-Bottom, 7 mm Sterile	50/pk
AH0-9341	96-Well Collection Plate, 0.5 mL/well Conical Bottom 7 mm	50/pk
<u>AH1-7036</u>	96-Well Low-Bind Collection Plate, 2 mL/well Round Well Conical Bottom (glass lined)	120/pk
Sealing Mats		
AH0-8597	Sealing Mats, Pierceable, 96-Square Well, Silicone	50/pk
AH0-8598	Sealing Mats, Pre-Slit, 96-Square Well, Silicone	50/pk
AH0-8631	Sealing Mats, Pierceable, 96-Round Well 7mm, Silicone	50/pk
AH0-8632	Sealing Mats, Pre-Slit, 96-Round Well 7mm, Silicone	50/pk
AH0-8633	Sealing Mats, Pierceable, 96-Round Well 8mm, Silicone	50/pk
AH0-8634	Sealing Mats, Pre-Slit, 96-Round Well 8mm, Silicone	50/pk
AH0-7362	Sealing Tape Pad	10/pk
Vacuum Manfolds		
<u>AH0-8950</u>	96-Well Plate Manifold, Universal with Vacuum Gage	ea

Diverse SLE sorbent options that work with your unique extractions!

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

Watch "An Introduction to Supported Liquid Extraction" Visit:

www.phenomenex.com/SLE

Solid Phase Extraction (SPE)

Solid Phase Extraction (SPE) is a very targeted form of sample preparation that allows you to isolate your analyte of interest while removing any interfering compounds that may be in your sample

- Targeted analyte extraction for clean extracts
- Concentration of samples for better chromatographic results
- Solvent switching for GC or LC compatibility
- Clean extracts lead to longer column lifetime and better chromatographic results

www.phenomenex.com/SPE

Try Strata-X PRO SPE to save 40% time and achieve cleaner results! Learn more on pages 57-59

Learn more about SPE for Biopharmaceutical samples pages 62-65

4 Steps to Solid Phase Extraction Method Development

Selecting The Right Sorbent: Strata[™] Silica-Based and Strata-X Polymer-Based Sorbents

Identify the Possible SPE Retention Mechanism

101

Reversed Phase (RP), Ion-Exchange (IEX) or Normal Phase (NP) The sample solvent composition will guide you towards an appropriate SPE mechanism.

Once the general mechanism is identified, it will be necessary to identify the most specific Strata or Strata-X sorbent by matching the analyte functional groups to the sorbent functional group.

SPE Mechanism	Analyte Functional Group	Sorbent Functional Group	Strata-X Sorbent	Strata Sorbent
Povorsod	R hydrocarbon	R hydrocarbon		C18-E, C18-U, C8
Phase	aromatic	aromatic	X, XL	C18-T PH, SDBL
	R - OH	CN		
Normal Phase	hydroxyl	polar		CN, NH ₂
	R - NH ₂	ОН		Si-1, CN, EPH
	amino	polar		
	NR_4^+ strong	-O ₂ C-weak	X-CW, XL-CW	WCX
lon Exchange	RNH_{3}^{+} weak	-O ₃ S-strong	X-C	Screen-C, SCX
ION-Exchange	RSO ₃ ⁻ strong	⁺ H ₃ N-weak	X-AW, XL-AW	NH_2
	RCO ₂ - weak	⁺ R ₃ N-strong	X-A, XL-A	Screen-A, SAX

Selecting The Right Sorbent: Strata[™] Silica-Based Sorbents

SPE OverviewStrataStrata-XStrata-X PROIncrease Detection Sensitivity by removing matrix contaminants..

Select Your Particle and Pore Size

	Strata-X, X-C, X-A, X-CW, X-AW	Strata-XL, XL-C, XL-A, XL-CW, XL-AW
Particle & Pore Size	33µm, 85Å	100µm, 300Å
High Concentration Samples	•	
Small Target Analytes (< 10 kDa)	•	
Large Target Analytes (> 10 kDa)		•
Large Volume Samples		•
Viscous Samples		•

Additional Matrix Removal Technology

bullet point should only be in Strata-X PRO column

Polymer-Based Sorbents Loading Capacities

Sample Matrix	Sorbent Mass	Strata-X, X-C, X-CW, X-A, X-AW	Strata-XL, XL-C, XL-CW, XL-A, XL-AW			
Blood, serum, plasma	30 mg	250 µL	125 µL			
Urine	30 mg	1 mL	500 µL			
Filtered tissue homogenates	60 mg	100mg	50 mg			
Environmental Samples	Sorbent Mass	Strata-X, X-C, X-CW, X-A, X-AW	Strata-XL, XL-C, XL-CW, XL-A, XL-AW			
Water (particulate-free) drinking	200 mg	100 - 400 mL	50 - 200 mL			
Water (particulate-laden) rivers, runoff, etc.	500 mg	100 - 400 mL	50 - 200 mL			
Soil extracts	500 mg	100 g	50 g			

Sorbent Wash and Elution Volumes*

The volume of solvent needed for the wash and elution steps is directly related to the mass of sorbent in the SPE tube and more specifically the "bed volume" of the SPE device. Typically 4 – 16 bed volumes are used in SPE methods.

StrataX Sorbent Mass	2mg	10 mg	30 mg	60 mg	100 mg	150 mg	200 mg	500 mg	1 g	2 g	5 g	10 g
Practical Minimum Wash and Elution Volume 4 bed volumes	25µL	100 µL	300µL	600µL	1 mL	1.5mL	2mL	5mL	10 mL	20 mL	50 mL	100 mL
Recommended Wash and Elution Volume 8 bed volumes	50µL	200 µL	600µL	1.2mL	2mL	3mL	4mL	10mL	20 mL	40 mL	100 mL	200 mL

*The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline. An elution study should be conducted to determine the appropriate volume to use.

102

Selecting The Right Sorbent: Strata[™] Silica-Based Sorbents

SPE Overview	Strata	Strata-X	Strata-X PRO
Increase Detection Sensitivity by removing matrix contaminants	•	•	•
Increase Column Lifetime by removing matrix contaminants	•	•	•
Quality Guaranteed by more than 20 QA and QC measures	•	•	•
Increase Reproducibility with robust methods	•	•	•
Save Time by processing multiple samples simultaneously or automating method	•	•	•
Specific Selectivity for your target analytes	•	•	•
Decreased Solvent Consumption with the highest loadability		•	•
Decreased Blow-down Time with smaller elution volumes		•	•
Decreased Sample Variation with deconditioning resistant sorbent		•	•
pH Stable from 1-14		•	•

Silica-Based Sorbents Loading Capacities

Sample Matrix	Sorbent Mass
Blood, serum, plasma	50 mg sorbent per 250 µL
Urine	50 mg sorbent per 500 µL
Filtered tissue homogenates	100 mg sorbent per 100 mg tissue
Environmental Samples	Sorbent Mass
Environmental Samples Water (particulate-free) drinking	Sorbent Mass 500 mg/100 mL - 500 mL sample
Environmental Samples Water (particulate-free) drinking Water (particulate-laden) rivers, runoff, etc.	Sorbent Mass 500 mg/100 mL - 500 mL sample 1 g/100 mL - 500 mL sample

Sorbent Wash and Elution Volumes*

The volume of solvent needed for the wash and elution steps is directly related to the mass of sorbent in the SPE tube and more specifically the "bed volume" of the SPE device. Typically 4 – 16 bed volumes are used in SPE methods.

Sorbent Mass	10 mg	50 mg	100 mg	150 mg	200 mg	500 mg	1 g	2 g	5 g	10 g
Practical Minimum Wash and Elution Volume 4 bed volumes	60 µL	300µL	600µL	900 µL	1.2 mL	3mL	6mL	12 mL	30 m L	60 mL
Recommended Wash and Elution Volume 8 bed volumes	120 µL	600 µL	1.2 mL	1.8 mL	2.4 mL	6mL	12 mL	24 mL	60 mL	120 m L

*The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline. An elution study should be conducted to determine the appropriate volume to use.

Sample Pre-treatment Recommendations

Reproducible, high efficiency solid phase extraction requires that the sample be made liquid prior to loading onto a SPE device. The SPE sample should meet the following conditions:

• Liquid of low viscosity (to pass through the cartridge)

BIO3

- Low solids or particulate contaminants (to prevent clogging)
- Solvent composition that is suitable for retention (each mechanism has different matrix solvent composition requirements for proper retention)

Biologic	Biological Samples (liquid)				
	Urine, Whole blood, Serum, Plasma, Bile, etc.	Dilute sample 1:2 with appropriate buffer, precipitate proteins if pro- teinaceous (ZnSO ₄ , ACN), hydrolyze urinary glucuronides, disruption of protein binding (sonication, enzymatic, acids/bases).			
	Oral fluid, Saliva	Pre-treat sample according to manufacturers recommendations. Add appropriate buffer for analyte extraction and vortex before load- ing onto SPE cartridge.			
Biologi	cal Samples (solid)				
❤	Organ tissues, Feces, GI contents	Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant, centrifuge or filter supernatant. Perform direct Matrix Solid Phase Dispersion (MSPD) extraction on tissue.			
Q	Hair	Cut hair into very small pieces and add appropriate buffer and inter- nal standard. Proceed to incubate for specified amount of time.			
Sample	Matrix				
۵	Water (waste, river, etc.)	Buffer to appropriate pH and filter particulates from sample.			
1	Soil, Sludge	Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant and filter supernatant; perform Soxhlet extraction.			
T		Oil-based Dissolve in non-polar organic (hexane) and extract via polar SPE.			
	Ointments, Creams	Water-based Dissolve in water or water miscible organic (methanol) and extract via non-polar SPE.			
ö	Fruit, Vegetable, Herbs, Cannabis	Homogenize with organic or aqueous solvent depending upon analyte solubility and filter supernatant. Use appropriate SPE mechanism for the dissolution solvent (hexane = polar mechanism; aqueous = non-polar mechanism; methanol/ACN = either non-polar or polar after proper dilution).			

General Starting Methods

Strata-X Polymeric SPE Phase Overview

• Clean extracts from biological sample matrices

04

Streamlined method development and simple processing

Strata-X Phase	Functional Group	Mode	Analyte	Recommended Alternative to Waters®
Strata-X		Reversed Phase	Polar and Non-Polar	Oasis® HLB
Strata-X-C	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} -0^{-i}$	Reversed Phase and Strong Cation-Exchange	Bases	Oasis MCX
Strata-X-CW	$\sum_{i=0}^{n} e_{i}$	Reversed Phase and Weak Cation-Exchange	Bases (including Quaternary Amines)	Oasis WCX
Strata-X-A	CH ₃ CH ₃	Reversed Phase and Strong Anion-Exchange	Acids	Oasis MAX
Strata-X-AW		Reversed Phase and Weak Anion-Exchange	Acids (including Sulfonic acids)	Oasis WAX
Strata-XL		Large Particle Reversed Phase	Polar and Non-Polar	Oasis HLB
Strata-XL-C	$\sum_{i=1}^{n} \underbrace{\bigcirc}_{i=1}^{n} \underbrace{\frown}_{i=1}^{n} \underbrace{\frown}_{i$	Large Particle Reversed Phase and Strong Cation-Exchange	Bases	Oasis MCX
Strata-XL-CW	Ľ	Large Particle Reversed Phase and Weak Cation- Exchange	Bases (including Quaternary Amines)	Oasis WCX
Strata-XL-A	CH ₃ CH ₃	Large Particle Reversed Phase and Strong Anion-Exchange	Acids	Oasis MAX
Strata-XL-AW	$\sum_{i=1}^{n} O_{i} V_{NH_{i}} V_{NH_{2}}$	Large Particle Reversed Phase and Weak Anion- Exchange	Acids (including Sulfonic acids)	Oasis WAX

SPE Method Development Tool Develop SPE methods for sample cleanup and concentration in under one minute. www.phenomenex.com/mdtool Microelution SPE For small volume samples without the dry down step for added sensitivity. www.phenomenex.com/Microelution General Starting Methods

General Starting Methods

Strata-X / Strata-XL Reversed Phase

04

Working with Drugs of Abuse?

Strata-X-Drug B and Strata-X-Drug N Specialized sorbents for basic and neutral drugs of abuse testing.

Strata-X Drug B Plus In-well hydroslysis and solid phase extraction for drugs of abuse extracted from urine.

*Based on 30 mg/1 mL sorbent mass. The above is a convenient starting point for SPE method development. Further optimization may be required to tailor the method to your specific needs.

Strata[™]-X-C / Strata-XL-C

Strong Cation-Exchange & Reversed Phase

Strata-X-CW / Strata-XL-CW

Weak Cation-Exchange & Reversed Phase

for Bases with pK_a > 8

*Based on 30 mg/1 mL sorbent mass. The above is a convenient starting point for SPE method development. Further optimization may be required to tailor the method to your specific needs.

Strata-X-A / Strata-XL-A

Strong Anion-Exchange & Reversed Phase

	for Acids with pK _a > 2	
0 str	Condition 1 mL Methanol	Strong Anion-Exchange: di-methylbutyl quaternary amine ligand
ataX-A)	Equilibrate 1 mL Water Load Diluted Sample pH 6-7	
	Wash 1 mL 25 mM Ammonium Acetate Buffered, pH 6-7 Wash 1 mL Methanol (collect this fraction to analyze Neutral/Bases Elute Acids 2x 500 μL 5 % Formic Acid in Methanol	5)

Strata-X-AW / Strata-XL-AW

Weak Anion-Exchange & Reversed Phase

for Acids with p**K**_a ≤ 5

Need help getting your method started?

Watch a step by step for a SPE Tutorial:

Develop a method in less than a minute:

www.phenomenex.com/SPEMethodDevelopment

Still have additional questions about SPE?

Chat with a live technical expert

www.phenomenex.com/chat

Strata[™] Silica-Based SPE Sorbents • Extremely reproducible from batch-to-batch

104

• Formats for large and small volume samples

Reversed Ph	ase Sorbents		
Phase	Phase Benefits	Sorbent Chemistry	Recommended Method (see pp. 54-55)
C18-E	Extraction of hydrophobic molecules		METHOD 1
C18-U	Enhanced cleanup of hydrophobic compounds that contain hydroxy or amine functional groups		METHOD 1
С18-Т	Wide pore for the extraction of large hydrophobic molecules (up to 75 kDa)		METHOD 1
C8	Extraction of extremely hydrophobic compounds that are retained too tightly on C18-E		METHOD 1
Phenyl (PH)	Extraction of aromatic compounds		METHOD 1
CN	Extraction of polar compounds	C THE	METHOD 1
SDB-L	Extraction of non-polar and polar compounds; pH resistant sorbent	$\sum_{i=1}^{n}$	METHOD 1
Normal Phase S	orbents		
Si-1 (Silica)	Extraction of polar compounds that are similar in structure	ови-он	METHOD 6
FL-PR (Florisil®)	Extraction of pesticides	Florisil	METHOD 6
NH ₂	Extraction of strong anions	ing ing	METHOD 6
CN	Extraction of polar compounds	ССТИ	METHOD 6

Waters [™] Sep-Pak [®]	Agilent [®] Bond Elut [®]	Biotage [®] IST [®] ISOLUTE [®]	UCT®	CleanScreen [®] StyreScreen [®]
tC18	Bond Elut C18	C18 (EC)	C18	DSC-18
	Bond Elut C18-OH	C18		
C18	Bond Elut C18-EWP			DSC-18Lt
C8	Bond Elut C8	C8(EC)	C8	DSC-8
	Bond Elut PH	РН	Phenyl	DSC-Ph
CN	Bond Elut Cyano (CN-E)	CN	CN	DSC-CN
	Bond Elut ENV Bond Elut LMS	101	STET DVB	DSC-PS/DVB
Silica	Bond Elut SI	SI	Silica	DSC-Si
Florisil®	Bond Elut Florisil®	FL	Florisil [®] PR	ENVI-Florisil®
NH ₂	Bond Elut Aminopropyl (NH ₂)	NH ₂	Amino Propyl	DSC-NH ₂

CN

DSC-CN

Bond Elut Cyano (CN-E)

CN

CN

104

Strata[™] Silica-Based SPE Sorbents (*cont'd*)

Ion-Exchange	e Sorbents		
Phase	Phase Benefits	Sorbent Chemistry	Recommended Method (see pp. 54-56)
ABW	Fractionation of neutral compounds such as amides from acidic and basic analytes	Ì~C+.	Inquire
SAX	Extraction of weak anions) K	METHOD
SCX	Extraction of 1°, 2°, and 3° amines	2-0+	METHOD 3
WCX	Extraction of quaternary amines	Jose Los	METHOD 2
Screen-C	Mixed-mode cation-exchange that also provides hydrophobic retention		METHOD 3
Screen-C GF	Large particle size, mixed-mode cation-exchange that also provides hydrophobic retention	that.	METHOD 3
Screen-A	Mixed-mode anion-exchange that also provides hydrophobic retention	J	METHOD 5
NH ₂	Extraction of strong anions	ing ing ing	METHOD 4

Special Sorbe	Special Sorbents						
Phase	Phase Benefits	Sorbent Chemistry	Recommended Method (see pp. 54-56)				
Alumina-N (AL-N)	Extraction of polar compounds from food and environmental samples	Proprietary	METHOD 6				
EPH (Extractable Petroleum Hydrocarbons)	Fractionation of aliphatic and aromatic hydrocarbons from environmental samples		METHOD 6				
Activated Carbon	Extraction of polar analytes in aqueous matrices		METHOD 7				
GCB	Extraction of pesticides from water, fruits and vegetables; High polar and non-polar analytes	3	METHOD 8				
PFAS (WAX/ GCB)	Fast SPE extraction of Polyfluoroalkyl Substances (PFAS) from diverse matrices	Proprietary	METHOD 9				

Resprep Method Specific

SPE Cartridge Activated

Charcoal 6mL/2g

GCB

Superclean[™] Coconut

. Charcoal SPE Tube

GCB

Phenomenex | WEB: www.phenomenex.com

Sep-Pack[®] AC2

Enviro-Clean® Method 521

Graphitized Carbon

2000mg

Black(GCB)

Strata[™]

1

Strata WCX

Weak Cation - Exchange

*100 mg sorbent mass

Strata Activated Carbon

Reversed Phase

Sulfate C 5 mL Me 5 mL Me Reconst gen to re Methyler

PFAS (WAX/GCB)

Condition 1	
1:4 mL 0.3% Ammonium hyd	roxide
Condition 2	
4 mL Methanol	
Equilibrate	
4 mL Water	
Lood	
Load	
Add sample at 4 mL/min [*]	
Wash	
2x 4 mL Water	
Elute	Evaporate
4 mL 0.3% Ammonium	to drvness and reconstitute to 1 mL
hydroxide in Methanol	with Methanol/Water (96:4)
hydroxide in Methanol	with Methanol/Water (96:4)

Remove moisture - Pass the elute through Methylene Chloride prewetted Strata Sodium Sulfate Giga[™] tubes, 5 g/20 mL and wash with 5 mL Methylene Chloride.

Reconstitute - Evaporate solvent under Nitrogen to required volume and reconstitute with Methylene Chloride

*100 mg sorbent mass

Strata-X PRO

An innovative solid phase extraction (SPE) sorbent that offers a faster, cleaner way to extract your samples, completely revolutionizing traditional SPE methods. Strata-X PRO offers improved and rugged polymeric sorbent performance combined with matrix removal technology for a revolutionary solution. With a faster SPE method, it results in at least 40% reduction in time on your SPE protocol. Less steps with no conditioning or equilibration creates a fast SPE method without losing out on the importance of SPE: cleaning up your samples.

Recoveries of Analytes From Plasma for Strata-X PRO and Waters[™] Oasis PRiME

Comparison of Removal of Phospholipids from Plasma

Lyso 1: 1 Palmitoyl 2 OH sn glycero phosphocholine, (16:0)

Lyso 2: 1 Oleoyl 2 OH sn glycero phosphocholine, (18:1) m

PC 1: 1 Palmitoyl 2 Oleoyl sn glycerol phosphocholine, (16:0, 18:1)

PC 2: 1 Stearoyl 2 Lindoleoyl sn glycerol phosphocholine, (18:0, 18:2)

PC 4: 1 Oleoyl 2 Lindoleoyl sn glycerol phosphocholine, (18:1, 18:2)

58

Matrix Effects

Ordering Information

Strata-X PRO SPE

Format	Sorbent Mass	Part Number	Unit
Tube			
	10 mg	8B-S536-AAK	1 mL (100/box)
STIMIN &	30 mg	8B-S536-TAK	1 mL (100/box)
	30 mg	8B-S536-TBJ	3 mL (50/box)
	60 mg	8B-S536-UBJ	3 mL (50/box)
	200 mg	8B-S536-FBJ	3 mL (50/box)
	100 mg	8B-S536-ECH	6 mL (30/box)
	200 mg	8B-S536-FCH	6 mL (30/box)
	500 mg	8B-S536-HCH	6 mL (30/box)
96-Well Plate			
-	10 mg/well	8E-S536-AGA	ea
1-51	30 mg/well	8E-S536-TGA	ea
C.	60 mg/well	8E-S536-UGA	ea
96-Well Microelutio	n Plate		
1-3	2 mg/well	<u>8M-S536-4GA</u>	ea

Accessories

Part No.	Description	Unit
Collection Plates	(deep well, polypropylene)	
AH0-7192	96-Well Collection Plate 350 µL/well	50/pk
AH0-7193	96-Well Collection Plate 1 mL/well	50/pk
AH0-7194	96-Well Collection Plate 2 mL/well	50/pk
AH0-8635	96-Well Collection Plate, 2 mL Square/Round-Conical	50/pk
AHO-8636	96-Well Collection Plate, 2 mL Round/Round, 8 mm	50/pk
AH1-7025	96-Well Collection Plate, 1 mL/well Round, 7 mm	50/pk
AH0-9332	96-Well Collection Plate, 1.2 mL/well Round Well Round Bottom	50/pk
AHO-9333	96-Well Collection Plate, 0.5 mL/well V-Bottom, 7 mm Sterile	50/pk
AH0-9341	96-Well Collection Plate, 0.5 mL/well Conical Bottom 7 mm	50/pk
AH1-7036	96-Well Low-Bind Collection Plate, 2 mL/well Round Well Conical	120/pk
	Bottom (glass lined)	
Sealing Mats		
AHO-8597	Sealing Mats, Pierceable, 96-Square Well, Silicone	50/pk
AHO-8598	Sealing Mats, Pre-Slit, 96-Square Well, Silicone	50/pk
AHO-8631	Sealing Mats, Pierceable, 96-Round Well 7 mm, Silicone	50/pk
AHO-8632	Sealing Mats, Pre-Slit, 96-Round Well 7 mm, Silicone	50/pk
AHO-8633	Sealing Mats, Pierceable, 96-Round Well 8 mm, Silicone	50/pk
AHO-8634	Sealing Mats, Pre-Slit, 96-Round Well 8 mm, Silicone	50/pk
AH0-7362	Sealing Tape Pad	10/pk
acuum Manifold		
/M12	SPE 12-Position Vacuum Manifold Set, for tubes	ea
/M24	SPE 24-Position Vacuum Manifold Set, for tubes	ea
AHO-8950	96-Well Plate Manifold, Universal with Vacuum Gauge	ea
Manifolds include	: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lic	d with

gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-positive manifold.

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

SPE Tubes Ordering Info Process Multiple Samples at Once

Strata Silica-Based Sorbents

Tubes	1 mL (1	00/box)		3 mL (50/box)			6 mL (30/box)	
Phase	50 mg	100 mg	100 mg	200 mg	500 mg	200 mg	500 mg	1 g
C18-E	8B-S001-DAK	8B-S001-EAK	8B-S001-EBJ	8B-S001-FBJ	8B-S001-HBJ	8B-S001-FCH	8B-S001-HCH	8B-S001-JCH
C18-U	_	8B-S002-EAK	_	8B-S002-FBJ	8B-S002-HBJ	_	8B-S002-HCH	8B-S002-JCH
C18-T	—	8B-S004-EAK	—	8B-S004-FBJ	8B-S004-HBJ		8B-S004-HCH	8B-S004-JCH
C8	_	8B-S005-EAK	—	8B-S005-FBJ	8B-S005-HBJ		8B-S005-HCH	8B-S005-JCH
Phenyl	—	8B-S006-EAK	—	8B-S006-FBJ	8B-S006-HBJ		8B-S006-HCH	8B-S006-JCH
SCX	—	8B-S010-EAK	8B-S010-EBJ	8B-S010-FBJ	<u>8B-S010-HBJ</u>		8B-S010-HCH	8B-S010-JCH
WCX	_	8B-S027-EAK	_	8B-S027-FBJ	<u>8B-S027-HBJ</u>	_	8B-S027-HCH	<u>8B-S027-JCH</u>
SAX	—	8B-S008-EAK	8B-S008-EBJ	8B-S008-FBJ	<u>8B-S008-HBJ</u>	_	8B-S008-HCH	<u>8B-S008-JCH</u>
NH ₂	_	<u>8B-S009-EAK</u>	_	8B-S009-FBJ	<u>8B-S009-HBJ</u>	_	<u>8B-S009-HCH</u>	<u>8B-S009-JCH</u>
CN	—	<u>8B-S007-EAK</u>	_	8B-S007-FBJ	<u>8B-S007-HBJ</u>	_	<u>8B-S007-HCH</u>	<u>8B-S007-JCH</u>
Si-1	_	<u>8B-S012-EAK</u>	_	8B-S012-FBJ	<u>8B-S012-HBJ</u>	_	<u>8B-S012-HCH</u>	<u>8B-S012-JCH</u>
Florisil®	—	_	—	_	8B-S013-HBJ		8B-S013-HCH	8B-S013-JCH
EPH	_	_	_	_	<u>8B-S031-HBJ</u>	_	_	_
AL-N	—	_	—	_	<u>8B-S313-HBJ</u>	_	_	<u>8B-S313-JCH</u>
PFAS	—	—	—	_	—	<u>CS0-9207</u>	<u>CS0-9208</u>	
GCB	_	_	—	_	_	8B-S528-FCH	8B-S528-HCH	_

Mixed-mode sorbents (for drugs of abuse)

Tubes	1 mL (100/box)		3 mL (50/box)			6 mL (30/box)		
Phase	—	100 mg	100 mg	150 mg	200 mg	200 mg	500 mg	—
Screen-C	_	8B-S016-EAK	8B-S016-EBJ	8B-S016-SBJ	8B-S016-FBJ	8B-S016-FCH	8B-S016-HCH	—
Screen-A	_	8B-S019-EAK		—	8B-S019-FBJ	8B-S019-FCH	8B-S019-HCH	_

Polymeric sorbents

Tubes	1 mL (100/box)		3 mL (50/box)			6 mL (30/box)		
Phase	50 mg	100 mg	—	200 mg	500 mg	200 mg	500 mg	1 g
SDB-L	8B-S014-DAK	<u>8B-S014-EAK</u>	—	8B-S014-FBJ	<u>8B-S014-HBJ</u>	8B-S014-FCH	8B-S014-HCH	8B-S014-JCH

Strata-X Polymer-Based Sorbents

Tubes	1 mL (1	00/box)		3 mL (50/box)			6 mL (30/box)	
Phase	30 mg	60 mg	60 mg	200 mg	500 mg	100 mg	200 mg	500 mg
Strata-X	8B-S100-TAK	<u>8B-S100-UAK</u>	8B-S100-UBJ	8B-S100-FBJ	<u>8B-S100-HBJ</u>	8B-S100-ECH	8B-S100-FCH	8B-S100-HCH
Strata-X-C	8B-S029-TAK	_	8B-S029-UBJ	8B-S029-FBJ	<u>8B-S029-HBJ</u>	8B-S029-ECH	8B-S029-FCH	<u>8B-S029-HCH</u>
Strata-X-CW	<u>8B-S035-TAK</u>	—	8B-S035-UBJ	<u>8B-S035-FBJ</u>	<u>8B-S035-HBJ</u>	8B-S035-ECH	<u>8B-S035-FCH</u>	<u>8B-S035-HCH</u>
Strata-X-A	8B-S123-TAK	_	8B-S123-UBJ	8B-S123-FBJ	8B-S123-HBJ	8B-S123-ECH	8B-S123-FCH	8B-S123-HCH
Strata-X-AW	8B-S038-TAK	—	8B-S038-UBJ	8B-S038-FBJ	8B-S038-HBJ	8B-S038-ECH	8B-S038-FCH	8B-S038-HCH
Strata-XL	8B-S043-TAK	_	8B-S043-UBJ	8B-S043-FBJ	8B-S043-HBJ	8B-S043-ECH	8B-S043-FCH	<u>8B-S043-HCH</u>
Strata-XL-C	8B-S044-TAK	—	8B-S044-UBJ	8B-S044-FBJ	8B-S044-HBJ	8B-S044-ECH	8B-S044-FCH	8B-S044-HCH
Strata-XL-CW	8B-S052-TAK	_	8B-S052-UBJ	8B-S052-FBJ	<u>8B-S052-HBJ</u>	8B-S052-ECH	8B-S052-FCH	8B-S052-HCH
Strata-XL-A	8B-S053-TAK	—	8B-S053-UBJ	8B-S053-FBJ	8B-S053-HBJ	8B-S053-ECH	8B-S053-FCH	8B-S053-HCH
Strata-XL-AW	8B-S051-TAK	_	8B-S051-UBJ	8B-S051-FBJ	<u>8B-S051-HBJ</u>	8B-S051-ECH	8B-S051-FCH	8B-S051-HCH

Accessories For Tubes

Adapter Caps		
Part No.	Description	Unit
<u>AH0-7191</u>	Adapter Caps for 1, 3, and 6mL SPE tubes, polyethylene, with Luer tip	15/pk

On-line SPE

On-line Extraction Cartridges	Dimensions	Part No.
Strata C18	20 x 2.0 mm	00M-S039-B0-CB
Strata C8	20 x 2.0 mm	00M-S101-B0-CB
Strata-X	20 x 2.0 mm	00M-S033-B0-CB
Strata-X-A	20 x 2.0 mm	00M-S132-B0-CB
Strata-X-AW	20 x 2.0 mm	00M-S038-B0-CB
Strata-X-C	20 x 2.0 mm	00M-S048-B0-CB
Strata-X-CW	20 x 2.0 mm	00M-S036-B0-CB
Cartridge Holder	20 mm	CH0-5845

VER8

- Advanced manufacturing
 - Multi-step QA/QC
- Cleanroom packaged
- Certified quality

Learn more at www.phenomenex.com/verex

96-Well Plate Ordering Information

SPE 96-Well Plates

Process Samples with a Vacuum Manifold Positive Pressure Manifold 96-Well Plate Manifold Robot

Strata-X Polymer-Based Sorbents

96-Well Plates (2/Box)					
Phase	10 mg	30 mg	60 mg		
Strata-X-AW	8E-S038-AGB	8E-S038-TGB	8E-S038-UGB		
Strata-X-A	8E-S123-AGB	8E-S123-TGB	8E-S123-UGB		
Strata-X	8E-S100-AGB	8E-S100-TGB	8E-S100-UGB		
Strata-X-C	8E-S029-AGB	8E-S029-TGB	8E-S029-UGB		
Strata-X-CW	8E-S035-AGB	8E-S035-TGB	8E-S035-UGB		
Strata-XL-AW	-	8E-S051-TGB	-		
Strata-XL-A	-	8E-S053-TGB	-		
Strata-XL	-	8E-S043-TGB	-		
Strata-XL-C	-	8E-S044-TGB	-		
Strata-XL-CW	-	8E-S052-TGB	-		

Strata-X Microelution Plates

96-Well Plates (ea)	
Phase	2 mg
Strata-X-AW	8M-S038-4GA
Strata-X-A	8M-S123-4GA
Strata-X	8M-S100-4GA
Strata-X-C	8M-S029-4GA
Strata-X-CW	8M-S035-4GA

Round Well Collection Plates (polypropylene)

Part No.	Well Bottom	Well Volume	Unit	Suggested Sealing Mats
<u>AH0-7279</u>	Round	1 mL	50/pk	AH0-8631 AH0-8632
<u>AH0-8636</u>	Round	2mL	50/pk	<u>AH0-8633</u> AH0-8634

Collection Plates*

Part No.	Description	Unit
<u>AH0-7192</u>	350 µL/well 96-Square Well Conical V-bottom Collection Plate	50/pk
<u>AH0-7193</u>	1 mL/well 96-Square Well Conical V-bottom Collection Plate	50/pk
<u>AH1-7025</u>	1 mL/well 96-Round Well Round Bottom 7 mm Collection Plate	50/pk
<u>AH0-7194</u>	2 mL/well 96-Square Well Conical V-bottom Collection Plate	50/pk
<u>AH0-8636</u>	2 mL/well 96-Round Well Round Bottom 8 mm Collection Plate	50/pk
<u>AH0-9332</u>	1.2 mL/well 96-Round Well Round Bottom Collection Plate	50/pk
<u>AH0-9333</u>	0.5 mL/well 96-Round Well V-Bottom, 7 mm Collection Plate, Sterile	50/pk
<u>AH0-9341</u>	0.5 mL/well 96-Round Well Conical Bottom 7 mm Collection Plate	50/pk
<u>AH1-7036</u>	2 mL/well Low-Bind 96-Round Well Conical Bottom (deep well, polypropylene, glass lined) Collection Plate	120/pk

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy

Strata Silica-Based Sorbents

96-Well Plates (2/Box)					
Phase	25 mg	50 mg	100 mg		
С18-Е	8E-S001-CGB	8E-S001-DGB	8E-S001-EGB		
C18-U	_	8E-S002-DGB	8E-S002-EGB		
C18-T	8E-S004-CGB	8E-S004-DGB	_		
C8	8E-S005-CGB	_	_		
Phenyl	8E-S006-CGB	_	8E-S006-EGB		
Silica	—	8E-S012-DGB	8E-S012-EGB		
NH	8E-S009-CGB	8E-S009-DGB	8E-S009-EGB		
SAX	8E-S008-CGB	8E-S008-DGB	8E-S008-EGB		
SCX	8E-S010-CGB	8E-S010-DGB	8E-S010-EGB		
WCX	8E-S027-CGB	8E-S027-DGB	_		
Screen-C	_	8E-S016-DGB	8E-S016-EGB		
SDB-L	_	8E-S014-DGB	-		

Round Well Sealing Mats

Part No.	Description	Material	Unit
<u>AHO-8631</u>	Pierceable, 7 mm diameter	Silicone	50/pk
<u>AH0-8632</u>	Pre-Slit, 7 mm diameter	Silicone	50/pk
<u>AHO-8633</u>	Pierceable, 8 mm diameter	Silicone	50/pk
<u>AHO-8634</u>	Pre-Slit, 8 mm diameter	Silicone	50/pk
<u>AH0-7362</u>	Sealing Tap Pad	—	10/pk

Square Well Sealing Mats

Part No.	Description	Material	Unit
AH0-8597	Pierceable	Silicone	50/pk
<u>AH0-8598</u>	Pre-Slit	Silicone	50/pk
<u>AH0-8199</u>	Pierceable	Santoprene [™]	100/pk
<u>AH0-7195</u>	Pierceable	Ethylene Vinyl Acetate (EVA)	50/pk
AH0-7362	Sealing Tap Pad	—	10/pk

Strata Activated Carbon

Part No.	Description	Unit
<u>CS0-9209</u>	2g/6mL	30/pk
<u>CS0-9210</u>	400mg/Pass Through cartridge	50/pk

Strata GCB

Part No.	Description	Unit
8B-S528-CAJ	25mg/1mL Pass Through Cartridge	50/pk
8B-S528-FCH	250mg/6mL	30/pk
<u>8B-S528-HCH</u>	500mg/6mL	30/pk

Strata PFAS SPE (WAX/GCB)

Part No.	Description	Unit
<u>CS0-9207</u>	200mg/50mg/6mL	30/pk
<u>CS0-9208</u>	500mg/50mg/6mL	200/Pk
<u>CS0-9208-S</u>	500mg/50mg/6mL	30/Pk

SPE Clean-up for Biologics

Bioligical samples are complex sample matrices that require comprehensive sample preparation before analysis. SPE is offered in a variety of different formats for glycan clean-up, oligonucleotides, and can be used for a simple desalting technique.

Biozen N-Glycan Clean-Up Solid Phase Extraction

Solid phase extraction (SPE) HILIC stationary phase that excels at retention and recovery labeled released N-glycans! Microelution format allows for streamlined processing and clean-up of small sample volumes.

Biozen N-Glycan Clean-Up

bioZen Solid Phase Extraction	Format	Sorbent Mass	Part Number	Unit	Price
Biozen N-Glycan Clean-Up	Microelution 96-Well Plate	5 mg/well	8M-S009-NGA	1/box	\$ 310

Clarity[™] Rapid Isolation of Oligo Therapeutics from Biological Samples

- > 80 % typical extraction recoveries
- No liquid-liquid extraction (LLE) required
- Suitable for a majority of therapeutic oligos, tissues, and fluids
- Optimized for LC-MS bioanalysis
- Can be automated for high-throughput

biozen

	Clarity QSP™	Clarity Oligo-RP™ Clarity Oligo-XT	Clarity Oligo-SAX	Clarity RP-Desalting™
Primary Use	High-throughput, trityl-on RPC purification	RP-HPLC purification of failure sequences from target sequences	Economical, high loading capacity IEX-LC prep-scale purification	Quick removal or salt & excess reagent
Purities	>90%	>90%	>90%	>70%
Recoveries	~90%	~70%	~90%	~70%
Synthesis Scale Load	Up to 50 µmol	Up to 50 µmol	Up to 50 µmol	Up to1 µmol
Oligo Types	DNA, RNA/RNAi, Thioates, Dye-labled, Modified			

Characterization / Analysis

	Clarity Oligo-RP™	Clarity Oligo-MS™ Clarity Oligo-XT	Clarity Oligo-OTX™
Primary Use	RP-LC-MS analysis with optimized selectivity and sensitivity	Rapid, high efficiency RP-LC-MS analysis for QC and characterization	Extraction of oligo therapeutics from biological samples for LC-MS bioanalysis
Oligo Length	≤ 60 mer	\leq 60 mer	≤ 40 mer
Recommended Mobile Phase	TEA / HFIP	TEA/HFIP/MeOH	N/A

Upgrade your LC

Try Biozen Oligo LC Columns for High Performance, pH 1-12 Stable Core-Shell Particle Packaged in a Bio-Inert Hardware.

www.phenomenex.com/biozen

Ordering Information

Choose from 96-well plates or cartridges and stock up on 1L quantities of buffers.

Tart No.	Description		Unit	
<u>KS0-8494</u>	Clarity™ OTX™ Starter Kit- Tubes	Includes: 100 mg/3 mL cartridges (x50) Lysis-loading buffer (10 Equilibration buffer (250 mL) Wash buffer (350 mL) Eli	ea 20 mL) ution buffer (100 mL)	Group
<u>KS0-9253</u>	Clarity OTX Starter Kit- 96-Well Plate	100 mg/ 96-well plate (x1) Lysis-loading buffer (100 mL) Equilibration buffer (250 mL) Wash buffer (350 mL) Elution buffer (100 mL)	ea	2
<u>8M-S103-40</u>	GA Clarity OTX Microelution Well Plate	2 mg/ well	1/box	
8E-S103-CO	A Clarity OTX Well Plate	25 mg/ well	1/box	
8E-S103-EG	A Clarity OTX Well Plate	100 mg/ well	1/box	
8B-S103-EE	3J Clarity OTX Cartridge	100 mg/3 mL	50/box	
8B-S103-H0	Clarity OTX Cartridge	500 mg/6 mL	30/box	
<u>AL0-8579</u>	Clarity OTX Lysis-Loading Buffer V2.0	1L	ea	2

DMT On (Trityl On)

Clarity QSP

The DNA and RNA synthesis process results in a solution that contains target oligos as well as impurities and failure sequences. Target oligos must then be isolated and purified for further analysis. Using a Quick, Simple, and Pure (QSP) protocol, Clarity QSP produces greater than 90 % recoveries of target oligos in less than 20 minutes.

It's Quick, Simple, and Pure (QSP)

Pre-treatment

Trityl-on oligo sample preparation. Mix equal volume of loading buffer with cleavage/deprotection solution

Ordering Information

Part No.	Description		Unit
8E-S102-DGB	Clarity QSP Well Plate	50 mg/well	1/box
8B-S102-UBJ	Clarity QSP Cartridge	60 mg/3 mL	50/box
8B-S102-SBJ	Clarity QSP Cartridge	150 mg/3 mL	50/box
8B-S042-LFF	Clarity QSP Cartridge	5 g/60 mL	16/box
Buffers*			
<u>AL0-8280</u>	Clarity QSP DNA Loading Buffer	1 L	ea
<u>AL0-8282</u>	Clarity QSP RNA-TBDMS Loading Buffer	1 L	ea

* RNA-TOM loading buffer available upon request

DMT Off (Trityl off)

Clarity RP-Desalting[™]

Trityl-off synthetic oligo synthesis mixtures must undergo a desalting process to remove salts and buffers that are not amenable to LC/ MS analysis. Clarity RP-Desalting tubes and 96-well plates provide a high capacity, fast and effective desalting solution that results in greater than 70% purity and 80% recovery of trityl-off synthetic oligos.

Desalting of Dye-Labeled DNA

A quencher-labeled sample of DNA (25nt) with the sequence FAMTTGACTTAGACTTAGA-CTTAGTTT was desalted using Clarity RP-Desalting tubes in the 200 mg/3 mL format. Collection fractions were then analyzed for purity and recovery using the above protocol.

Ordering Information

Tubes	200 mg/3 mL*	500 mg/3 mL**	96-Well Plates*		
Phase	50/box	50/box	Part No.	Description	Unit
Clarity RP Desalting	8B-S041-FBJ	<u>8B-S041-HBJ</u>	8E-S041-SGA	Clarity RP Desalting 150 mg/well	ea

* For 200 µmole synthesis

** For 1 µmole synthesis

Sample Processing

Instantly Increase Throughput Without Investing in Expensive Capital Equipment

SPE Tube Vacuum Manifold

- Process up to 12 or 24 samples at one time
- Process up to 10 large volume samples at one time
- Female Luer inlets fit all male Luer tipped SPE tubes and cartridges

96-Well Plate Vacuum Manifold

- Includes vacuum valve attachment and two collection plate spacer inserts
- Made of durable acrylic
- Designed to accommodate 96-well plates, collection plates, protein precipitation plates, and filtration plates

Ordering Information

Part No.	Description	Unit
24 – Position	Vacuum Manifold*3	
VM24	SPE 24-Position Vacuum Manifold Set, complete assembly	ea
24 - Position	Vacuum Manifold Replacement Parts	
A82404	SPE Gasket	ea
VM24-J	SPE Collection Rack	ea
VM24-W	SPE 24-Position Vacuum Waste Container, polypropylene	ea
A81213	SPE Luer Stopcocks	12/pk
12 - Position	Vacuum Manifold*2	
VM12	SPE 12-Position Vacuum Manifold Set, complete assembly	ea
12 – Position	Vacuum Manifold Replacement Parts	
A80106	SPE Gasket	ea
A81216	SPE Collection Rack Assembly, including plates, legs and clips ²	ea
A81215	SPE 12-Position Vacuum Waste Container, polypropylene	ea
A81213	SPE Luer Stopcocks	12/pk

- * Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-position manifold.
- (1) The 10-position Tall Boy Vacuum Manifold Collection Rack includes 4 plates: one base plate, one dimple plate, one small plate and one large plate and three riser bar legs, along with 12 manifold clips to support the plates. The assembly also includes 10 polypropylene needles, 10 stopcocks and 4 black legs to support the lid when taken off the glass block.
- (2) The 12-position Collection Rack Assembly consists of 3 support legs, base plate, dimple plate, small plate, medium plate, large plate, volumetric plate, and 12 retaining clips.
- (3) The 24-position Collection Rack Assembly consists of 3 support legs, base plate, dimple plate, small plate, large plate, and 12 retaining clips.

Part No.	Description	Unit
96-Well Plat	e Manifold**	
AH0-8950	96-Well Plate Manifold, Universal w/vacuum gauge	ea
Replacemen	t Parts	
Part No.	Description	Unit
<u>AH0-7285</u>	96-Well Plate Manifold Replacement Gasket, Flat (to fit between acrylic chamber and 96-well plate), black	ea
<u>AH0-7198</u>	96-Well Plate Manifold Replacement Gasket, Profile, (to fit between acrylic chamber and manifold base), white	ea
AH0-8637	Reservoir, Single Well, High Profile, 96 Bottom Troughs	25/pk

**Manifold, compatible with 2 mL Impact plate, Strata and Strata-X 96-well plate formats.

Part No.	Description	Unit
General V	acuum Manifold Accessories	
A80215	Adapter Caps for 1, 3 and 6 mL SPE tubes, polyethylene, with Luer tip	12/pk
A80100	SPE Manifold Needles, polypropylene	12/pk
A80102	SPE Manifold Needles, stainless steel	12/pk
A80104	Female Luer Fittings	1/pk
A80105	Male Luer Fittings	1/pk
A01003	Vacuum Gauge and Valve Assembly	ea
A80111	Retaining Clips	12/pk
A80117	Plugs/Dust Caps	12/pk
A81213	Stopcocks	12/pk

Immunocapture

Uniform magnetic bead particles for isolating and cleaning up proteins and peptides.

- Non-saturated, accurate binding surface orientation
- Blocked with copolymer and hydrophilic coupled with biotinylated BSA which:
 - Properly orients capture antibody
 - Prevents surface crowding and ligand inactivation through non-specific binding
 - Enhances dispersion of particles
 - Improves binding efficiency

www.phenomenex.com/BiozenSP

MagBead Activation

Immunocapture

MagBead Specifications

Bead Type:	Iron coated
Bead Diameter:	1 µm
Outside Coating Type:	Streptavidin
Biotin Binding Capacity :	> 200 pmol Biotin/mg
Coating Specification:	Tosyl-Activated, blocked with hydrophilic copolymer
Concentration:	20 mg/mL
Available Formats:	25 mg, 50 mg, 500 mg

Learn how to use Biozen MagBeads at www.phenomenex.com/BiozenSP

Response of MagBead Clean-Up

Comparison of Dynabeads M-280 vs. Biozen MagBeads

Ordering Information

Biozen MagBeads Streptavidin Coated

Formats	Part No.	Concentration	Bead Size
25 mg (≈50 samples) 50 mg (≈100 samples) 500 mg (≈1000 samples)	<u>KS0-9531</u> <u>KS0-9532</u> KS0-9533	20 mg/mL	1.0µm

Biozen MagBeads offer improved recovery and provides greater accuracy for the peptide quantitation.

Column:	Biozen 3µm Peptide PS-C18
Dimension:	50 x 2.1 mm
Part No.:	00B-4771-AN
Mobile Phase:	A: 0.1 % Formic acid in Water
	B: 0.1 % Formic acid in Acetonitrile
Gradient:	3-50 % in 4.5 minutes
Flow Rate:	0.3 mL/min
Temperature:	40 °C
Detection:	SCIEX X500B Q-TOF
Sample:	Rituximab 1.5 µg/mL (ASGYTFTSYNMHWVK)

Your happiness is our mission. Take 45 days to try our products. If you are not happy, we'll make it right. www.phenomenex.com/behappy Find a Biozen LC Column at www.phenomenex.com/BiozenLC

Sample Preparation Tools and Resources

Search Hundreds of Applications

Syringe Filter Finder Tool

Sample Preparation Support at Your Fingertips www.phenomenex.com/sampleprep

SPE Method Development Tool

Sample Preparation Basics Overview

SAMPLE PREPARATION — MADE SIMPLE — Selection and Users Guide

Australia t: +61 (0)2-9428-6444 auinfo@phenomenex.com

Austria t: +43 (0)1-319-1301 anfrage@phenomenex.com

Belgium t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch)

Canada t: +1 (800) 543-3681 info@phenomenex.com

beinfo@phenomenex.com

China t: +86 400-606-8099

cninfo@phenomenex.com

Czech Republic t: +420 272 017 077 cz-info@phenomenex.com

Denmark t: +45 4824 8048 nordicinfo@phenomenex.com

Finland t: +358 (0)9 4789 0063 nordicinfo@phenomenex.com

France t: +33 (0)1 30 09 21 10 franceinfo@phenomenex.com

Germany t: +49 (0)6021-58830-0 anfrage@phenomenex.com

Hong Kong t: +852 6012 8162 hkinfo@phenomenex.com

India t: +91 (0)40-3012 2400 indiainfo@phenomenex.com

Indonesia t: +62 21 5010 9707 indoinfo@phenomenex.com

Ireland t: +353 (0)1 247 5405 eireinfo@phenomenex.com

Italy t: +39 051 6327511 italiainfo@phenomenex.com

Japan t: +81 (0) 120-149-262 jpinfo@phenomenex.com

Luxembourg t: +31 (0)30-2418700 nlinfo@phenomenex.com

• phenomenex

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country/region, contact Phenomenex USA, International Department at international@phenomenex.com

Trademarks

2

BR27940322

Trademarks (Clarity, OTX, QSP, RP-Desalting, Oligo-RP, Oligo-MS, Verex, Strata, Kinetex, Phenex, Impact, Phree, roQ, Novum, β-Gone, Solvent Shielding Technology, BE-HAPPY, and Biozen are trademarks of Phenomenex. Enviro-Clean is a registered trademark of United Chemical Technologies and Chem Elut is a trademark. Thermo Fisher and HyperSep are trademarks of Thermo Fisher Scientific, Inc., Su-pelclean is a trademark of Sigma-Aldrich Co. LLC. Agilent, Bond Elut, Bond Elut, Bond Elut Certify are registered trademarks of Agilent Technologies, Inc. Waters, Oasis, and Sep-Pak are registered trademarks of Waters Corp. Supelco is a registered trademarks of Sigma-Aldrich, Co. LLC. UCT, StyreScreen, Clean Screen, and Xtract are registered trademarks of United Chemical Technologies. Biotage, IST, evolute, and ISOLUTE are registered trademarks of Biotage. Florisil is a registered trademark of U.S. Silica Co. Cyrolite is a registered trademark of CY/RO Industries. Teflon is a registered trademark of El. du Pont de Nemours and Co. Santoprene is a trademark of Exxon Mobil Corporation. SCIEX is a registered trademark of AB SCIEX Pte. Ltd. AB SCIEX[™] is being used under license. Disclaimer

Comparative separations may not be representative of all applications

Phenomenex is not affiliated with Waters Corp., Restek, UCT, MilliporeSigma, Sigma-Aldrich, Co. LLC., United Chemical Technologies, Biotage, or U.S. Silica Co.

Strata-X is patented by Phenomenex. U.S. Patent No. 7,119,145

Clarity Oligo-XT is patented by Phenomenex. U.S. Patent No. 7,563,367 and 8,658,038 and foreign counterparts.

Clarity OTX and QSP are patented by Phenomenex. U.S. Patent No. 7,119,145.

Novum is patent pending.

FOR RESEARCH USE ONLY. Not for use in clinical diagnostic procedures. © 2022 Phenomenex, Inc. All rights reserved.

Mexico t: 01-800-844-5226

- tecnicomx@phenomenex.com
- The Netherlands t: +31 (0)30-2418700 nlinfo@phenomenex.com
- New Zealand t: +64 (0)9-4780951 nzinfo@phenomenex.com
- Norway t: +47 810 02 005
- nordicinfo@phenomenex.com
- **Poland** t: +48 22 104 21 72 pl-info@phenomenex.com
- **Portugal** t: +351 221 450 488 ptinfo@phenomenex.com
- Singapore t: +65 800-852-3944 sginfo@phenomenex.com
- Slovakia t: +420 272 017 077 sk-info@phenomenex.com
- **Spain** t: +34 91-413-8613
- espinfo@phenomenex.com
- Sweden t: +46 (0)8 611 6950 nordicinfo@phenomenex.com
- Switzerland t: +41 (0)61 692 20 20 swissinfo@phenomenex.com
- **Taiwan** t: +886 (0) 0801-49-1246 twinfo@phenomenex.com
- Thailand t: +66 (0) 2 566 0287
- thaiinfo@phenomenex.com
- United Kingdom t: +44 (0)1625-501367 ukinfo@phenomenex.com
- **USA** t: +1 (310) 212-0555
- info@phenomenex.com
- All other countries/regions Corporate Office USA
 t: +1 (310) 212-0555
- info@phenomenex.com