

OLIGO THERAPEUTIC EXTRACTION

User's Guide for Extracting Oligo Therapeutics from Biological Samples

Terms and Conditions Subject to Phenomenex Terms and Conditions which may be viewed at www.phenomenex.com/TermsAndConditions

Trademarks

Clarity is a registered trademark and OTX is a trademark of Phenomenex. Triton is a registered trademark of The Dow Chemical Company ("Dow") or an affiliate of Dow.

Clarity OTX is patented by Phenomenex. U.S. Patent No. 7, 119,145.

European Patent No. 1, 506, 239. Japanese Patent No. 4312605

© 2017 Phenomenex, Inc. All rights reserved.

Table of Contents

1. Clarity [®] OTX [™] Overviewp.4
2. Protocolpp.4-8
3. Troubleshootingp.8
4. Storage and Stabilityp.9
5. Safety and Handlingp.9
6. Quality Assurancep.10
7. Frequently Asked Questionspp.10-13
8. Ordering Informationp.14
9. Buffer Recipesp.15

1. Clarity[®] OTX[™] Overview

Clarity OTX was designed to extract and isolate a wide range of therapeutic oligonucleotides, in a rapid four-step SPE method, from matrix contaminants that interfere with LC-MS quantitation of a parent and its metabolites. This solution eliminates the need for liquid-liquid extraction (LLE), can be automated for large sample sets and results in recoveries that are consistently greater than 80 % with good sample-to-sample reproducibility.

2. Protocol

Components Required

- 100 mg / 3 mL cartridges or 100 mg / 96-well plates
- Lysis-Loading buffer^{*}
- Equilibration buffer
- Wash buffer
- Elution buffer
- Methanol (MeOH)
- Homogenization buffer (Lysis-Loading Buffer, pH 5.5)
- Recommended for cartridges: 1.5 mL Eppendorf DNA LoBind Collection Tube

The cartridges, 96-well plates and Lysis-Loading buffers can be purchased from Phenomenex. All other buffers are to be prepared according to the steps in Appendix 9. "Lysis-Loading buffer properties are listed below (individual components are proprietary).

Lysis-Loading Buffer Properties	Yes	No
Cell lysis	Х	
Liposome disruption	Х	
Protein denaturing	Х	
Nuclease inhibition	Х	
Protease inhibition	Х	
Reduction of protein / peptide disulfide bonds		Х

Additional Sample Pre-Treatment

While the Lysis-Loading buffer inhibits the majority of the nuclease activity in a sample, some scientists working with RNAi-based therapeutics may require complete nuclease activity inhibition. To do so it is strongly recommended to add TCEP-HCI (tris (2-carboxyethyl) phosphine hydrochloride) to the Lysis-Loading buffer (2.87 g/L).

For scientists working with phosphorothioates, it is recommended to add cysteine to the Lysis-Loading buffer to prevent desulfurization during sample processing (1g/L).

Sample Preparation

Biological Fluids:

1. Add an equal volume of Lysis-Loading buffer to biological fluid matrix.

Note: If using the reducing agent TCEP-HCL, allow 5-15 minutes at room temperature for complete reduction before loading to plate / cartridge.

- 2. Vortex briefly
- Using a vacuum or positive pressure manifold, isolate and recover oligonucleotide via extraction protocol (see p. 6)

Tissue Samples:

- Homogenize tissue in 0.9 mL of Lysis-Loading buffer. Many tools are available for the homogenization of samples; bead homogenizers will work best for tissue samples.
- 2. Dilute your sample 1:1 or 1:2, v/v, with Lysis-Loading buffer and vortex briefly.
- 3. Using a vacuum manifold, isolate and recover oligonucleotide via extraction protocol (see p. 6).

Extraction Protocol for Biological Fluids

Sample Pre-Treatment	Apply appropriate sample pre-treatment (see p. 5) and dilute with Lysis- Loading buffer (1:1 or 1:2)					
Step	Solvent	96-Well Plates	Cartridges			
Condition	MeOH	1 mL	1 mL			
Equilibrate	50 mM Ammonium Acetate (pH 5.5)	1 mL	1 mL			
Load	Pre-treated sample	Up to 0.5 mL	0.4 - 3 mL			
Wash	50 mM Ammonium Acetate (pH 5.5) with 50 % MeCN	3x 1 mL (total volume 3 mL)	2x 3 mL (total volume 6 mL)			
Elute	100 mM Ammonium Bicarbonate, 1 mM TCEP (pH 9.5) with 40 % MeCN and 10 % THF	1 mL	1 mL			

Extraction Protocol for Tissue Samples

Sample Pre-Treatment	Apply appropriate sample pre-treatment (see p. 5) and dilute with Lysis- Loading buffer (1:1 or 1:2)				
Step	Solvent	96-Well Plates	Cartridges		
Condition	MeOH	1 mL	1 mL		
Equilibrate	50 mM Ammonium Acetate (pH 5.5) with 0.5 $\%$ Triton $^{\odot}$ X-100 $^{\circ}$	1 mL	1 mL		
Load	Pre-treated sample	Up to 0.5 mL	0.4 - 3 mL		
Wash 1	50 mM Ammonium Acetate (pH 5.5)	3x 1 mL (total volume 3 mL)	2x 3 mL (total volume 6 mL)		
Wash 2	50 mM Ammonium Acetate (pH 5.5) with 50 % MeCN	3x 1 mL (total volume 3 mL)	2x 3 mL (total volume 6 mL)		
Elute	100 mM Ammonium Bicarbonate, 1 mM TCEP (pH 9.5) with 40 % MeCN and 10 % THF	1 mL	1 mL		

* It is advised to modify the equilibration buffer with 0.5% Trion X-100 when working with tissue samples. To prepare, add 100µL 0.5% Triton X-100 and 20mg of 0.1% Cysteine to 20mL of Equilibration Buffer.

Method Optimization

Elution Solvent Optimization for Tissue Samples:

Publication	Matrix	Oligo	Sample Pre-treatment	Modifications
Boos JA, Kirk DW, Piccolotto	Various Organs	miRNA/ siRNA	Lysing matrix A tubes (MP Biomedicals)	N/A
ML, et al.			1:10 Lysis-Loading buffer w/ TCEP FastPrep-24 (MP Biomedicals)	
			Spin down @ 12,000 rpm	
R. Wheller et al. / International	Plasma	siRNA (2'-0Me/F)	N/A	Equilibration: 50 mM Ammonium Acetate, 2 mM Sodium Azide, pH 5.5
Journal of Mass				Wash: 50 mM Ammonium Acetate: ACN (50:50)
345–347 (2013) 45–53				Elution: 50/40/10, v/v/v, 100 mM Ammonium Bicarbonate/ACN/THF

Method Optimization cont'd

Publication	Matrix	Oligo	Sample Pre-treatment	Modifications
Christensen J, Litherland K, Faller T, et al.	Plasma	siRNA-LNP	0.1 % Triton® X-100 was added to the Lysis-Loading buffer	N/A
Jiao K, Rashid A, Basu SK, et al.	Liver Tissue	DsiRNA	TissueLyser II homogenization homogenized in 100 mL of TEKnova denaturing buffer (TE buffer), pH 7.2	N/A
Perepelyuk M, Thangavel C, Liu Y, et al.	Tissue	Encapsulated siRNA	Homogenization in 0.1mol/L Tris buffer, pH 8.0 1:1 Lysis-Loading buffer	N/A

3. Troubleshooting

Problem	Cause	Solution
Following N ₂ dry- down, the white pellet did not completely dissolve	The pellet was evaporated to complete dryness.	D0 NOT DRY T0 COMPLETENESS. Reconstitute in 10-20 µL of 8 M urea/0.1 NH HC0 /0.5 mM EDTA. Then dilute 4x before LC-MS injection
Low (< 75 %) or no recovery (typical recovery is 80-90 %)	Sample not completely dissolved after reconstitution.	Ensure sample is completely dissolved after reconstitution.
	Therapeutic sequence has a unique modification.	Contact Phenomenex to discuss possible alternative elution formulations.
	The oligo did not load properly onto the sorbent.	The pH of the sample loaded is too high or too low. The pH of the sample to be loaded on the sorbent, after mixing the sample with the Lysis–Loading buffer, should be ~5.5.
	The oligo was dried down to completeness and has bonded to the polypropylene collection tube.	Reconstitute as described above.
Chromatograms indicate that biological matrix contaminants are present	Lysis-Loading buffer was not completely evacuated from SPE media diminishing the efficacy of subsequent steps.	Increase vacuum to 10-15" Hg immediately after loading sample on SPE media.
	Appropriate buffer volumes were not administrated.	Ensure the appropriate buffer volumes outlined in the protocol were used.
	Biological sample is extremely complex and dirty.	Additional wash volumes of both wash and equilibration buffer can be added to the protocol to help remove unwanted contaminants. An additional high pH wash with minimal organic can be added to reduce background.

4. Storage and Stability

Cartridges & 96-Well Plates

Store at room temperature (~25 °C) indefinitely.

Buffers

Store the following buffers tightly at room temperature (~25 $^{\circ}\text{C})$ for up to 24 months.

- Lysis-Loading buffer
- · Equilibration buffer

Store the following buffers tightly closed at room temperature (~25 $^{\circ}\text{C})$ for up to 24 months.

- Wash buffer
- Elution buffer

5. Safety and Handling

Cartridges & 96-Well Plates

The SPE media housed in the cartridges and 96-well plates requires no special handling nor does it impose any chemical or biological hazards.

Buffers

- Lysis-Loading buffer: Avoid contact and inhalation. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling.
- Equilibration buffer: Avoid contact and inhalation. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling.
- Wash buffer: Keep away from heat, sparks, and open flame. Avoid contact and inhalation. Do not get in eyes, on skin, or on clothing. Avoid prolonged or repeated exposure. Do not use if skin is cut or scratched. Wash thoroughly after handling.
- Elution buffer: Keep away from heat, sparks, and open flame. Avoid contact and inhalation. Do not get in eyes, on skin, or on clothing. Avoid prolonged or repeated exposure. Do not use if skin is cut or scratched. Wash thoroughly after handling.

NOTE – for more information, refer to the MSDS sheets available by contacting Phenomenex or by visiting www.phenomenex.com/Clarity

6. Quality Assurance

The QA/QC of the SPE media includes determination of the physical characteristics and a % recovery evaluation. All buffers are tested for conductivity and pH to ensure they are within specification.

7. Frequently Asked Questions

Q. What types of therapeutic oligonucleotides can be extracted from biological fluids with Clarity[®] OTX[™]?

A. DNA, RNA, miRNA, siRNA, phosphorothioates, LNA, single stranded, duplexed, and encapsulated oligonucleotides. As long as there is a phosphodiester or phosphorothioate backbone the extraction protocol should provide excellent clean-up and recovery. If you have a question about a specific oligo type, please contact Phenomenex to discuss further.

Q. What sequence lengths can be used with Clarity OTX?

A. Clarity OTX is designed for isolating and extracting therapeutic sequences ranging from 4nt to 35nt.

Q. Can double stranded oligonucleotides be extracted using Clarity OTX?

A. Yes, but only those sequences with less than 40 total base pairs are viable with Clarity OTX.

Q. What is the concentration range that can be detected?

A. Calibration curves are linear over the concentration range of 1-1000 ng/mL.

Q. Do the included buffers provide nuclease inhibition?

A. Yes. The Lysis-Loading buffer is formulated to provide cell lysis and remove all protease activity in biological fluids.

Q. Can alternative lysis and/or load buffers be used?

A. No. The Clarity OTX SPE media and buffers were developed to work in unison. Alternative solutions will not provide effective isolation or extraction of oligonucleotides.

Q. Is a vacuum source required?

A. Yes. The Clarity OTX media particle size is not suitable for gravity flow. A vacuum source that can provide at least 10" Hg is required. Alternatively, a positive pressure manifold may be used if no vacuum source is available.

Q. What other equipment is necessary?

A. Vacuum manifold (or positive pressure manifold), vortex, centrifuge, N_{2} dry down station and / or SpeedVac.

7. Frequently Asked Questions (cont'd)

Q. Can the Clarity[®] OTX[™] cartridges and 96-well plates be re-used?

A. No. Unlike current extraction procedures, Clarity OTX provides an on-sorbent isolation and extraction of oligonucleotides from biological fluids. Matrix contaminants are retained on the media while the targeted oligo sequence is extracted. Consequently, those contaminants cannot be effectively removed even with stringent and continued washing. Thus, re-using would pollute subsequent samples.

Q. What type of mechanism is used to isolate the oligo therapeutics from the biological matrix?

- A. The Clarity OTX polymeric sorbent is a mixed-mode, anion exchanger. It works by selectively retaining the oligo based on its inherent chemical properties.
- Q. What types of biological matrices can Clarity OTX extract oligos from?
 - A. The extraction protocol has worked effectively with tissue and most biological fluids notably, plasma, serum, urine, and sputum.
- Q. Is it better to dry down or lyophilize the sample after the elution step?
 - A. Preferably lyophilize. While evaporation techniques are practiced, drying to complete dryness can adversely affect the oligonucleotide.

Q. Do you offer Clarity OTX in a microelution format?

A. Because the protocol is designed to be a one-step SPE, a larger mass of sorbent is necessary to completely very hydrophobic components found in complex biological matrices. As such, Clarity OTX is only available in 100 mg 96-well plate formats.

8. Ordering Information

Clarity[®] OTX[™] Products

Part No.	Description		Unit
8E-S103-EGA	Clarity OTX	100 mg/ 96-Well Plate	1/ Box
8B-S103-EBJ	Clarity OTX	100 mg/ 3 mL	50/ Box
AL0-8498	Clarity OTX Lysis-Loading buffer	1L	ea

Note – The Clarity OTX Starter Kit is recommended for validating proof of concept or for extracting small volumes of samples (< 100)

Note - The individual Clarity OTX 96-well plates & Lysis-loading buffer are recommended for large sample volumes (> 100) and for amenability to liquid handling robots.

Vacuum Manifolds, Collection Plates, and Sealing Mats

Part No.	Description		Unit
AH0-7284	96-Well Plate Manifold	Acrylic	ea
AH0-6024	24-Position Vacuum Manifold	Complete Set	ea
AH0-7194	96 Square Well Collection Plate	2 mL/ Well (Polypropylene)	50/pk
AH0-7408	Solvent Waste Reservoir Tray	For Well Plate Manifold	25/pk
AH0-7195	96-Well Pierceable Sealing Mat	Square Well	50/pk

Presston[™] 100 Positive Pressure Manifold

Part No.	Description
AH0-9334	Presston 100 Positive Pressure Manifold, 96-Well Plate
AH0-9342	Presston 100 Positive Pressure Manifold, 1 mL Tube Complete Assembly
AH0-9347	Presston 100 Positive Pressure Manifold, 3 mL Tube Complete Assembly
AH0-9343	Presston 100 Positive Pressure Manifold, 6 mL Tube Complete Assembly

Presston 100 Tube Adapter Kits (for AH0-9334)

The Presston 100 96-Well Positive Pressure Manifold can also process 1, 3, and 6 mL tubes using the following adapter kits

Part No.	Description
AH0-9344	1 mL Tube Adapter Kit
AH0-9345	3 mL Tube Adapter Kit
AH0-9346	6 mL Tube Adapter Kit

Phenomenex warrants that for a period of 12 months following delivery, the Presston 100 Positive Pressure Manifold you have purchased will perform in accordance with the published specifications and will be free from defects in materials or workmanship. In the event that the Presston 100 Positive Pressure Manifold does not meet this warranty, Phenomenex will repair or replace defective parts. Please visit www.phenomenex.com/Presston for complete warranty information.

9. Buffer Recipes

Bufffers	MW	Molarity	Volume (L)	Grams	Water	ACN	THF	Acetic Acid Aqueous solution	28% NH₄OH Aqueous Solution
Equilibration buffer:50 mM Ammonium Acetate (pH 5.5)	_	_	_	_	100 %			1-2 drops until pH achieved	
Ammonium Acetate	77.08	0.05	1	3.854	—	—	—	—	—
Wash buffer: 50 mM Ammonium Acetate (pH 5.5)					50%	50%		1-2 drops until pH achieve	
Ammonium Acetate	77.08	0.05	1	3.854	—	—	—	_	_
Elution buffer:100 mM NH ₄ HCO ₃ / THF / 1mM TČEP (pH 9.5)					50%		40%		4-5 drops
NH4HCO3	79.06	0.1	1	7.91					
TCEP	286.65	0.001	1	0.56					

Phenomenex products are available worldwide

www.phenomenex.com/mysupport

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV GL = 9001:2008 ==